IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v209y2023icp453-461.html
   My bibliography  Save this article

Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran

Author

Listed:
  • Yu, Yixuan
  • Liu, Huai
  • Zhang, Junhua
  • Zhang, Heng
  • Sun, Yong
  • Peng, Lincai

Abstract

Designing highly efficient non-noble metal catalyst for the selective hydrogenolysis of biomass derivatives to fuels and fine chemicals is a key pursuit for sustainable chemical industry but substantially challenging. In this contribution, we report, for the first time, the construction of amorphous bimetal Ni–Fe borides for efficient catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dimethylfuran (DMF) as a promising biofuel candidate. The as-prepared Ni1.52Fe0.36BOx catalyst afforded a near-quantitative DMF yield using ethanol as a green solvent under relatively mild operating conditions (1 MPa H2, 160 °C and 1 h), leading to an excellent DMF formation rate of 16.5 mmolDMF·gcat−1·h−1, which is 1.7–16.5 folds higher than the state-of-art nickel-based catalysts. Mechanistic investigations demonstrated that the Fe intervention is conductive to the generation of electron-enriched metal sites and powerful acidic sites in Ni1.52Fe0.36BOx catalyst, which favored the activation of hydrogen and the cleavage of C–O bond to accelerate the hydrogenolysis process. Moreover, Ni1.52Fe0.36BOx catalyst exhibited good recyclability as well as universality in the hydrogenolysis of various biomass-derived unsaturated aldehydes. This finding opens a new avenue for highly selective hydrodeoxygenation of renewable biomass feedstock to value-added chemicals with non-noble bimetal hybrids in a green and straightforward manner.

Suggested Citation

  • Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
  • Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:453-461
    DOI: 10.1016/j.renene.2023.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
    2. Ning Wang & Aoni Xu & Pengfei Ou & Sung-Fu Hung & Adnan Ozden & Ying-Rui Lu & Jehad Abed & Ziyun Wang & Yu Yan & Meng-Jia Sun & Yujian Xia & Mei Han & Jingrui Han & Kaili Yao & Feng-Yi Wu & Pei-Hsuan , 2021. "Boride-derived oxygen-evolution catalysts," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Tang, Xing & Wei, Junnan & Ding, Ning & Sun, Yong & Zeng, Xianhai & Hu, Lei & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2017. "Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 287-296.
    4. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    5. Jiang, Jingyun & Ding, Wentao & Li, Hao, 2021. "Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones," Renewable Energy, Elsevier, vol. 179(C), pages 1262-1270.
    6. Goyal, Reena & Abraham, B. Moses & Singh, Omvir & Sameer, Siddharth & Bal, Rajaram & Mondal, Prasenjit, 2022. "One-pot transformation of glucose into hydroxymethyl furfural in water over Pd decorated acidic ZrO2," Renewable Energy, Elsevier, vol. 183(C), pages 791-801.
    7. Zuo, Miao & Jia, Wenlong & Feng, Yunchao & Zeng, Xianhai & Tang, Xing & Sun, Yong & Lin, Lu, 2021. "Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent," Renewable Energy, Elsevier, vol. 164(C), pages 23-33.
    8. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    9. Feng, Li & Li, Xuhao & Lin, Yinhe & Liang, Yicong & Chen, Yuning & Zhou, Wen, 2020. "Catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity," Renewable Energy, Elsevier, vol. 160(C), pages 261-268.
    10. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
    2. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
    3. Qianqian Mu & Fuwu Yan & Jizhou Zhang & Lei Xu & Yu Wang, 2021. "Experimental and Numerical Study on the Sooting Behaviors of Furanic Biofuels in Laminar Counterflow Diffusion Flames," Energies, MDPI, vol. 14(18), pages 1-16, September.
    4. Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
    5. Peng, Lincai & Huangfu, Xin & Liu, Yao & Liu, Huai & Zhang, Junhua, 2022. "Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate," Renewable Energy, Elsevier, vol. 193(C), pages 357-366.
    6. Fang, Juan & Dong, Hao & Xu, Haimei, 2023. "The effect of Lewis acidity of tin loading siliceous MCM-41 on glucose conversion into 5-hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 218(C).
    7. Viar, Nerea & Requies, Jesús M. & Agirre, Ion & Iriondo, Aitziber & Arias, Pedro L., 2019. "Furanic biofuels production from biomass using Cu-based heterogeneous catalysts," Energy, Elsevier, vol. 172(C), pages 531-544.
    8. Yan, Kaiqi & Wang, Zhihao & Wang, Xiaobo & Xia, Shengpeng & Fan, Yuyang & Zhao, Kun & Zhao, Zengli & Zheng, Anqing, 2024. "Efficient catalytic conversion of cellulose into 5-hydroxymethylfurfural by modified cerium zirconium phosphates in a biphasic system," Renewable Energy, Elsevier, vol. 225(C).
    9. Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    11. Jinling Song & Chuyang Tang & Xinyuan An & Yi Wang & Shankun Zhou & Chunhong Huang, 2022. "Catalytic Pyrolysis of Sawdust with Desulfurized Fly Ash for Pyrolysis Gas Upgrading," IJERPH, MDPI, vol. 19(23), pages 1-11, November.
    12. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    13. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    14. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    15. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    17. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    18. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    19. Chen, Guan-Bang & Chang, Chung-Yu, 2024. "Co-gasification of waste shiitake substrate and waste polyethylene in a fluidized bed reactor under CO2/steam atmospheres," Energy, Elsevier, vol. 289(C).
    20. Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammed & Thaher, Mahmoud Ibrahim & Hawari, Alaa H. & Alshamri, Noora & AlGhasal, Ghamza & Al-Jabri, Hareb M.J., 2023. "Biocrude oil production from a self-settling marine cyanobacterium, Chroococcidiopsis sp., using a biorefinery approach," Renewable Energy, Elsevier, vol. 203(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:209:y:2023:i:c:p:453-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.