Simulation and economic evaluation of fuel additives production from glycerol
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.09.123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nanda, Malaya R. & Yuan, Zhongshun & Qin, Wensheng & Ghaziaskar, Hassan S. & Poirier, Marc-Andre & Xu, Chunbao (Charles), 2014. "A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening," Applied Energy, Elsevier, vol. 123(C), pages 75-81.
- Barreiros, Thaís & Young, André & Cavalcante, Raquel & Queiroz, Eduardo, 2020. "Impact of biodiesel production on a soybean biorefinery," Renewable Energy, Elsevier, vol. 159(C), pages 1066-1083.
- Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
- Jiménez, Roberto X. & Young, André F. & Fernandes, Heloisa L.S., 2020. "Propylene glycol from glycerol: Process evaluation and break-even price determination," Renewable Energy, Elsevier, vol. 158(C), pages 181-191.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Haiyang & Ma, Zhen & Liu, Xueli & Wu, Yuan & Zhang, Weihong & Zhao, Shiqiang & Chen, Wei & Chang, Chun, 2024. "Green synthesis of biobased glycerol levulinate ketal in a continuous flow reactor: Optimization, kinetics and simulation," Applied Energy, Elsevier, vol. 361(C).
- Vannucci, Julián A. & Gatti, Martín N. & Cardaci, Nicolas & Nichio, Nora N., 2022. "Economic feasibility of a solketal production process from glycerol at small industrial scale," Renewable Energy, Elsevier, vol. 190(C), pages 540-547.
- Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption," Renewable Energy, Elsevier, vol. 224(C).
- Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Azadirachta indica leaf extract-derived NiS@Functionalized biochar catalyst: Efficient acetalization and enhanced reusability in photodegradation of tinidazole," Renewable Energy, Elsevier, vol. 229(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sedghi, Reza & Shahbeik, Hossein & Rastegari, Hajar & Rafiee, Shahin & Peng, Wanxi & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Chen, Wei-Hsin & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & A, 2022. "Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
- Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
- Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability, Springer, vol. 2(1), pages 281-312, March.
- Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
- Trifoi, Ancuţa Roxana & Agachi, Paul Şerban & Pap, Timea, 2016. "Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 804-814.
- Vannucci, Julián A. & Gatti, Martín N. & Cardaci, Nicolas & Nichio, Nora N., 2022. "Economic feasibility of a solketal production process from glycerol at small industrial scale," Renewable Energy, Elsevier, vol. 190(C), pages 540-547.
- Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
- Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
- Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
- Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S., 2019. "Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent," Renewable Energy, Elsevier, vol. 130(C), pages 735-748.
- Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
- Nanda, Malaya R. & Zhang, Yongsheng & Yuan, Zhongshun & Qin, Wensheng & Ghaziaskar, Hassan S. & Xu, Chunbao (Charles), 2016. "Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1022-1031.
- Xiong, Yi-Wei & Go, Alchris Woo & Alivio, Roxanne Kathlyn O. & Santoso, Shella Permatasari & Angkawijaya, Artik Elisa & Soetaredjo, Felycia Edi & Agapay, Ramelito C., 2022. "Non-isothermal (trans)esterification of linoleic acid and soybean oil deodorizer distillate with methanol under subcritical conditions," Renewable Energy, Elsevier, vol. 197(C), pages 528-544.
- Imtisal Zahid & Muhammad Ayoub & Bawadi Bin Abdullah & Muhammad Hamza Nazir & Zulqarnain & Mariam Ameen Kaimkhani & Farooq Sher, 2021. "Activation of Nano Kaolin Clay for Bio-Glycerol Conversion to a Valuable Fuel Additive," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
- Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
- Vávra, Aleš & Hájek, Martin & Kocián, David, 2021. "The influence of vegetable oils composition on separation of transesterification products, especially quality of glycerol," Renewable Energy, Elsevier, vol. 176(C), pages 262-268.
- Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Singh, Vijendra & Arumugam, Selvamani & Tathod, Anup Prakash & Kuldeep, & Vempatapu, Bhanu Prasad & Viswanadham, Nagabhatla, 2023. "Sustainable production of aromatics-rich gasoline stock from bio-glycerol over hierarchically porous Zn-decorated HZSM-5 catalyst," Renewable Energy, Elsevier, vol. 217(C).
More about this item
Keywords
Glycerochemistry; Solketal; Glycerol tert-butyl ethers; Glycerol ethyl ethers; Process simulation; Economic analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1081-1099. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.