Simulation and optimization of night cooling with diffuse ceiling ventilation and mixing ventilation in a cold climate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.07.077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Piselli, Cristina & Prabhakar, Mohit & de Gracia, Alvaro & Saffari, Mohammad & Pisello, Anna Laura & Cabeza, Luisa F., 2020. "Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration," Renewable Energy, Elsevier, vol. 162(C), pages 171-181.
- Hu, Yue & Heiselberg, Per Kvols & Johra, Hicham & Guo, Rui, 2020. "Experimental and numerical study of a PCM solar air heat exchanger and its ventilation preheating effectiveness," Renewable Energy, Elsevier, vol. 145(C), pages 106-115.
- Ebrahimi-Moghadam, Amir & Ildarabadi, Paria & Aliakbari, Karim & Fadaee, Faramarz, 2020. "Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings," Renewable Energy, Elsevier, vol. 159(C), pages 736-755.
- Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
- Guo, Rui & Gao, Yafeng & Zhuang, Chaoqun & Heiselberg, Per & Levinson, Ronnen & Zhao, Xia & Shi, Dachuan, 2020. "Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China," Renewable Energy, Elsevier, vol. 147(P1), pages 2279-2294.
- Liu, Yan & Yang, Liu & Hou, Liqiang & Li, Shiyang & Yang, Jian & Wang, Qiuwang, 2017. "A porous building approach for modelling flow and heat transfer around and inside an isolated building on night ventilation and thermal mass," Energy, Elsevier, vol. 141(C), pages 1914-1927.
- Ji, Wenhui & Wang, Houhua & Du, Tao & Zhang, Zili, 2019. "Parametric study on a wall-mounted attached ventilation system for night cooling with different supply air conditions," Renewable Energy, Elsevier, vol. 143(C), pages 1865-1876.
- Kolokotroni, M. & Aronis, A., 1999. "Cooling-energy reduction in air-conditioned offices by using night ventilation," Applied Energy, Elsevier, vol. 63(4), pages 241-253, August.
- Zhuang, Chaoqun & Gao, Yafeng & Zhao, Yingru & Levinson, Ronnen & Heiselberg, Per & Wang, Zhiqiang & Guo, Rui, 2021. "Potential benefits and optimization of cool-coated office buildings: A case study in Chongqing, China," Energy, Elsevier, vol. 226(C).
- Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
- Solgi, Ebrahim & Fayaz, Rima & Kari, Behrouz Mohammad, 2016. "Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation," Renewable Energy, Elsevier, vol. 85(C), pages 725-731.
- Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
- Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
- Arranz, Beatriz & Ruiz-Valero, Letzai & González, Marlix Pérez & Sánchez, Sergio Vega, 2020. "Comprehensive experimental assessment of an industrialized modular innovative active glazing and heat recovery system," Energy, Elsevier, vol. 212(C).
- Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
- Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
- Ramponi, Rubina & Angelotti, Adriana & Blocken, Bert, 2014. "Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates," Applied Energy, Elsevier, vol. 123(C), pages 185-195.
- Anna Dudzińska & Tomasz Kisilewicz, 2020. "Alternative Ways of Cooling a Passive School Building in Order to Maintain Thermal Comfort in Summer," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Guo, Rui & Gao, Yafeng & Zhuang, Chaoqun & Heiselberg, Per & Levinson, Ronnen & Zhao, Xia & Shi, Dachuan, 2020. "Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China," Renewable Energy, Elsevier, vol. 147(P1), pages 2279-2294.
- Nadezhda S. Bondareva & Mikhail A. Sheremet, 2023. "A Numerical Study of Heat Performance of Multi-PCM Brick in a Heat Storage Building," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
- Ji, Wenhui & Wang, Houhua & Du, Tao & Zhang, Zili, 2019. "Parametric study on a wall-mounted attached ventilation system for night cooling with different supply air conditions," Renewable Energy, Elsevier, vol. 143(C), pages 1865-1876.
- Al-Yasiri, Qudama & Alktranee, Mohammed & Szabó, Márta & Arıcı, Müslüm, 2023. "Building envelope-enhanced phase change material and night ventilation: Effect of window orientation and window-to-wall ratio on indoor temperature," Renewable Energy, Elsevier, vol. 218(C).
- Roberto Stasi & Francesco Ruggiero & Umberto Berardi, 2024. "Assessing the Potential of Phase-Change Materials in Energy Retrofitting of Existing Buildings in a Mediterranean Climate," Energies, MDPI, vol. 17(19), pages 1-16, September.
- Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
- Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
- Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
- Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
- Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
- Ji Hyun Lim & Geun Young Yun, 2017. "Cooling Energy Implications of Occupant Factor in Buildings under Climate Change," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
- Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
More about this item
Keywords
Night ventilation; Convective heat transfer coefficient; Mixing ventilation; Diffuse ceiling ventilation; Building energy simulation; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:488-501. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.