IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318557.html
   My bibliography  Save this article

Comprehensive experimental assessment of an industrialized modular innovative active glazing and heat recovery system

Author

Listed:
  • Arranz, Beatriz
  • Ruiz-Valero, Letzai
  • González, Marlix Pérez
  • Sánchez, Sergio Vega

Abstract

In the last few decades, industrialized building construction has been identified as the way to build with greater guarantees in terms of sustainability. The optimization of building components must be prioritized and windows have high potential for energy savings and solar gain use. Although the advantages of integrating phase change material (PCM) into glazing units have been demonstrated, studies focused on windows are only 8%. Current research mainly tackles the difficulties for effective, reliable and practical applications of PCM. The functioning of PCM makes it necessary to take into account the local climate, the building characteristics, orientation and occupation profile. The objective of the present work is to design and evaluate the performance of an industrialized modular innovative active glazing and heat recovery system using PCM. First, the design and construction of the system focused on harnessing, storing and managing passive solar gains is carried out, followed by a comprehensive experimental comparative analysis. Savings on heating consumption in winter are up to 48%. The objective of harnessing solar radiation is reached and is reflected by a monthly consumption reduction of up to 25%. Future research needs to be performed, integrating user input.

Suggested Citation

  • Arranz, Beatriz & Ruiz-Valero, Letzai & González, Marlix Pérez & Sánchez, Sergio Vega, 2020. "Comprehensive experimental assessment of an industrialized modular innovative active glazing and heat recovery system," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318557
    DOI: 10.1016/j.energy.2020.118748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    2. Hu, Yue & Heiselberg, Per Kvols & Johra, Hicham & Guo, Rui, 2020. "Experimental and numerical study of a PCM solar air heat exchanger and its ventilation preheating effectiveness," Renewable Energy, Elsevier, vol. 145(C), pages 106-115.
    3. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    4. Ilaria Vigna & Lorenza Bianco & Francesco Goia & Valentina Serra, 2018. "Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis," Energies, MDPI, vol. 11(1), pages 1-19, January.
    5. Ángel Luis León-Rodríguez & Rafael Suárez & Pedro Bustamante & Miguel Ángel Campano & David Moreno-Rangel, 2017. "Design and Performance of Test Cells as an Energy Evaluation Model of Facades in a Mediterranean Building Area," Energies, MDPI, vol. 10(11), pages 1-16, November.
    6. Li, Dong & Wu, Yangyang & Zhang, Guojun & Arıcı, Müslüm & Liu, Changyu & Wang, Fuqiang, 2018. "Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption," Applied Energy, Elsevier, vol. 222(C), pages 343-350.
    7. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    2. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    2. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Guo, Rui & Hu, Yue & Heiselberg, Per & Johra, Hicham & Zhang, Chen & Peng, Pei, 2021. "Simulation and optimization of night cooling with diffuse ceiling ventilation and mixing ventilation in a cold climate," Renewable Energy, Elsevier, vol. 179(C), pages 488-501.
    4. Silva, Tiago & Vicente, Romeu & Amaral, Cláudia & Figueiredo, António, 2016. "Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis," Applied Energy, Elsevier, vol. 179(C), pages 64-84.
    5. Ilaria Vigna & Lorenza Bianco & Francesco Goia & Valentina Serra, 2018. "Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis," Energies, MDPI, vol. 11(1), pages 1-19, January.
    6. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    7. Yue Hu & Rui Guo & Per Kvols Heiselberg & Hicham Johra, 2020. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications," Energies, MDPI, vol. 13(23), pages 1-21, December.
    8. Mousavi, Seyedmostafa & Rismanchi, Behzad & Brey, Stefan & Aye, Lu, 2021. "PCM embedded radiant chilled ceiling: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    10. Cibele Eller & Mohamad Rida & Katharina Boudier & Caio Otoni & Gabriela Celani & Lucila Labaki & Sabine Hoffmann, 2021. "Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    11. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    12. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    13. Gao, Yuan & Zheng, Qiye & Jonsson, Jacob C. & Lubner, Sean & Curcija, Charlie & Fernandes, Luis & Kaur, Sumanjeet & Kohler, Christian, 2021. "Parametric study of solid-solid translucent phase change materials in building windows," Applied Energy, Elsevier, vol. 301(C).
    14. Luigi Giovannini & Francesco Goia & Valerio R. M. Lo Verso & Valentina Serra, 2018. "A Comparative Analysis of the Visual Comfort Performance between a PCM Glazing and a Conventional Selective Double Glazed Unit," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    15. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    16. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    17. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    18. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    19. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    20. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.