IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12975-d1227231.html
   My bibliography  Save this article

Energy Utilization and Carbon Reduction Potential of Solar Energy in Residential Blocks: A Case Study on a Tropical High-Density City in China

Author

Listed:
  • Jingtao Li

    (Academy of Arts & Design, Tsinghua University, Beijing 100190, China
    School of Art, Hubei University, Wuhan 430061, China)

  • Zhixin Li

    (School of Architecture, Tsinghua University, Beijing 100190, China)

  • Yao Wang

    (Academy of Arts & Design, Tsinghua University, Beijing 100190, China)

  • Hong Zhang

    (School of Architecture, Tsinghua University, Beijing 100190, China)

Abstract

Energy efficiency in high-density urban areas is increasingly gaining more attention as the energy crisis and environmental issues worsen. Urban morphology is an essential factor affecting the energy consumption and solar energy development potential of buildings. In response to the research gap of previous studies that only analyzed building energy consumption or solar energy potential from a single objective, this paper aims to combine the two objectives of block-scale building energy consumption and solar development potential to explore the joint influence of urban residential morphological elements on correlations between the two. By investigating and summarizing 100 sample cases of Wuhan city blocks, 30 urban residential block prototypes were constructed. The correlations between the leading morphological indicators of the blocks with the building energy consumption and solar energy potential of the residential prototypes were quantified, respectively. The study results show that at certain floor area ratios, the highest solar power generation can be achieved with a mixture of high-rise slabs and high-rise towers, but the building energy intensity level is relatively high; combining building energy consumption and solar power generation, the residential block form of high-rise towers and low-rise villas has incredible energy-saving potential. In addition, the regression analysis results show that three block form indicators, namely the roof-to-envelope area ratio, compacity, and site coverage, have the most prominent influence on building energy intensity and solar power generation, and they all show positive correlations. This study can provide suggestions for urban residential planners and managers to promote urban energy conservation at the design stage.

Suggested Citation

  • Jingtao Li & Zhixin Li & Yao Wang & Hong Zhang, 2023. "Energy Utilization and Carbon Reduction Potential of Solar Energy in Residential Blocks: A Case Study on a Tropical High-Density City in China," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12975-:d:1227231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Paola Vargas & Leon Hamui, 2021. "Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    2. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    3. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    4. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    2. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    4. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    5. Xiaodong Xu & Chenhuan Yin & Wei Wang & Ning Xu & Tianzhen Hong & Qi Li, 2019. "Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    6. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Ahmed Mustafa & Xiao Wei Zhang & Daniel G Aliaga & Martin Bruwier & Gen Nishida & Benjamin Dewals & Sébastian Erpicum & Pierre Archambeau & Michel Pirotton & Jacques Teller, 2020. "Procedural generation of flood-sensitive urban layouts," Environment and Planning B, , vol. 47(5), pages 889-911, June.
    8. Chévez, Pedro Joaquín & Martini, Irene & Discoli, Carlos, 2019. "Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability," Applied Energy, Elsevier, vol. 237(C), pages 751-778.
    9. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    10. Wei Feng & Wei Ding & Yingdi Yin & Qixian Lin & Meng Zheng & Miaomiao Fei, 2021. "Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi’an Baxian’an, China," IJERPH, MDPI, vol. 18(20), pages 1-25, October.
    11. Leticia Karine Sanches Brito & Maria Elisa Leite Costa & Sergio Koide, 2020. "Assessment of the Impact of Residential Urban Patterns of Different Hillslopes on Urban Drainage Systems and Ecosystem Services in the Federal District, Brazil," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    12. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    13. Danial Mohabat Doost & Alessandra Buffa & Grazia Brunetta & Stefano Salata & Guglielmina Mutani, 2020. "Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    14. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    15. Kit Benjamin & Zhiwen Luo & Xiaoxue Wang, 2021. "Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London," Energies, MDPI, vol. 14(16), pages 1-26, August.
    16. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    17. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    18. Job Taminiau & John Byrne & Jongkyu Kim & Min‐Hwi Kim & Jeongseok Seo, 2022. "Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    19. Yunfang Jiang & Xuemei Han & Tiemao Shi & Danran Song, 2019. "Microclimatic Impact Analysis of Multi-Dimensional Indicators of Streetscape Fabric in the Medium Spatial Zone," IJERPH, MDPI, vol. 16(6), pages 1-31, March.
    20. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12975-:d:1227231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.