IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp606-617.html
   My bibliography  Save this article

Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine

Author

Listed:
  • Zhou, Xing
  • Shi, Changzheng
  • Miyagawa, Kazuyoshi
  • Wu, Hegao

Abstract

When a Francis turbine operates over an extended range of regimes far from the best efficiency point, the formation of a helical precessing vortex rope can lead to reduced efficiency, severe pressure fluctuations, and power swings. Because the existence of a vortex rope limits the operating range of the Francis turbine, it is necessary to adopt certain measures to mitigate the occurrence of vortex ropes and the associated pressure fluctuations, to improve the operating flexibility of the turbine. In the present study, a novel method to mitigate vortex ropes was proposed. This method involves using a modified draft tube with an inclined conical diffuser. Under the operating condition of a 16° Guide Vane Opening, four different inclination angles (from 0° to 24.4°) were investigated to determine the optimal inclination angle. Computational fluid dynamics results demonstrated that an inclination angle of 18.8° was the most effective for hindering the development of strong swirling flow and resulted in a decline in the pressure pulsation amplitude. This angle was later used under three other partial load operating points, and the results were compared with those of a traditional draft tube. The modified draft tube with an inclined conical diffuser exhibited satisfactory and stable performance in terms of reducing the flow instabilities within the draft tube. Based on an analysis of the mechanism for alleviation of the vortex rope, it was concluded that the inclined conical diffuser plays an effective role in reducing the swirling flow in the draft tube and thus destroying the development of the vortex rope. As a result, the proposed approach could be adopted to ameliorate the instability issue in Francis turbines.

Suggested Citation

  • Zhou, Xing & Shi, Changzheng & Miyagawa, Kazuyoshi & Wu, Hegao, 2021. "Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 606-617.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:606-617
    DOI: 10.1016/j.renene.2021.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Valentín & Alexandre Presas & Eduard Egusquiza & Carme Valero & Mònica Egusquiza & Matias Bossio, 2017. "Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities," Energies, MDPI, vol. 10(12), pages 1-17, December.
    2. Yu Song & Honggang Fan & Wei Zhang & Zhifeng Xie, 2019. "Flow Characteristics in Volute of a Double-Suction Centrifugal Pump with Different Impeller Arrangements," Energies, MDPI, vol. 12(4), pages 1-15, February.
    3. Arispe, Tania M. & de Oliveira, Waldir & Ramirez, Ramiro G., 2018. "Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques," Renewable Energy, Elsevier, vol. 127(C), pages 114-124.
    4. Seung-Jun Kim & Young-Seok Choi & Yong Cho & Jong-Woong Choi & Jung-Jae Hyun & Won-Gu Joo & Jin-Hyuk Kim, 2020. "Effect of Fins on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model," Energies, MDPI, vol. 13(11), pages 1-23, June.
    5. Yu, An & Zou, Zhipeng & Zhou, Daqing & Zheng, Yuan & Luo, Xianwu, 2020. "Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1199-1208.
    6. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    7. Zeng, Wei & Yang, Jiandong & Yang, Weijia, 2016. "Instability analysis of pumped-storage stations under no-load conditions using a parameter-varying model," Renewable Energy, Elsevier, vol. 90(C), pages 420-429.
    8. KC, Anup & Lee, Young Ho & Thapa, Bhola, 2016. "CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques," Renewable Energy, Elsevier, vol. 86(C), pages 1406-1421.
    9. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    10. Xing Zhou & Changzheng Shi & Kazuyoshi Miyagawa & Hegao Wu & Jinhong Yu & Zhu Ma, 2020. "Investigation of Pressure Fluctuation and Pulsating Hydraulic Axial Thrust in Francis Turbines," Energies, MDPI, vol. 13(7), pages 1-16, April.
    11. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    12. Deyou, Li & Hongjie, Wang & Gaoming, Xiang & Ruzhi, Gong & Xianzhu, Wei & Zhansheng, Liu, 2015. "Unsteady simulation and analysis for hump characteristics of a pump turbine model," Renewable Energy, Elsevier, vol. 77(C), pages 32-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    2. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    3. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    4. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    5. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    6. Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
    7. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    8. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    2. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    3. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    4. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    5. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    7. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).
    8. Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
    9. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    10. Yun Jia & Xianzhu Wei & Qianyun Wang & Jinsheng Cui & Fengchen Li, 2019. "Experimental Study of the Effect of Splitter Blades on the Performance Characteristics of Francis Turbines," Energies, MDPI, vol. 12(9), pages 1-16, May.
    11. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    12. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    13. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    14. Arthur Favrel & Nak-joong Lee & Tatsuya Irie & Kazuyoshi Miyagawa, 2021. "Design of Experiments Applied to Francis Turbine Draft Tube to Minimize Pressure Pulsations and Energy Losses in Off-Design Conditions," Energies, MDPI, vol. 14(13), pages 1-25, June.
    15. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    16. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    17. Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
    18. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    19. Abazariyan, Sina & Rafee, Roohollah & Derakhshan, Shahram, 2018. "Experimental study of viscosity effects on a pump as turbine performance," Renewable Energy, Elsevier, vol. 127(C), pages 539-547.
    20. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:606-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.