IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp114-124.html
   My bibliography  Save this article

Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques

Author

Listed:
  • Arispe, Tania M.
  • de Oliveira, Waldir
  • Ramirez, Ramiro G.

Abstract

The present paper focuses on the parameterization of the draft tube elbow based on the initial geometry of the GAMM Francis turbine model. The goal was to obtain a draft tube geometry that improves the hydrodynamic performance. For this purpose, CFD analyzes were carried out, considering the GAMM Francis turbine pre-distributor, distributor and rotor geometry, and different parameterized draft tube geometries. Related to the draft tube parameterization methodology, it has modified the generatrix geometry of the elbow that defines its contour. Three types of curves were used to define the elbow contour geometry: logarithmic spiral format curve, circle arc format curve and denominated hyperbolic spiral curve. These curves and their combinations were used to define the elbow contour in the longitudinal plane, resulted in four draft tubes geometries. The numerical results were compared with experimental results, showing good conformity. The efficiency of the Francis turbine was higher for the four draft tubes of this work than the original draft tube GAMM Francis turbine. Therefore, it was found that the draft tube in hyperbolic-logarithmic spiral format has the highest efficiency and the draft tube in logarithmic spiral format has the lowest loss coefficient. Consequently the hydrodynamic performance have been discussed in this work.

Suggested Citation

  • Arispe, Tania M. & de Oliveira, Waldir & Ramirez, Ramiro G., 2018. "Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques," Renewable Energy, Elsevier, vol. 127(C), pages 114-124.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:114-124
    DOI: 10.1016/j.renene.2018.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. KC, Anup & Lee, Young Ho & Thapa, Bhola, 2016. "CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques," Renewable Energy, Elsevier, vol. 86(C), pages 1406-1421.
    2. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    3. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    4. Khan, Abid A. & Shahzad, Asim & Hayat, Imran & Miah, Md Salim, 2016. "Recovery of flow conditions for optimum electricity generation through micro hydro turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 940-948.
    5. Khan, Abid A. & Khan, Abdul M. & Zahid, M. & Rizwan, R., 2013. "Flow acceleration by converging nozzles for power generation in existing canal system," Renewable Energy, Elsevier, vol. 60(C), pages 548-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    2. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    3. Daniels, S.J. & Rahat, A.A.M. & Tabor, G.R. & Fieldsend, J.E. & Everson, R.M., 2020. "Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics," Renewable Energy, Elsevier, vol. 160(C), pages 112-126.
    4. Arthur Favrel & Nak-joong Lee & Tatsuya Irie & Kazuyoshi Miyagawa, 2021. "Design of Experiments Applied to Francis Turbine Draft Tube to Minimize Pressure Pulsations and Energy Losses in Off-Design Conditions," Energies, MDPI, vol. 14(13), pages 1-25, June.
    5. Adnan Aslam Noon & Man-Hoe Kim, 2021. "Sediment and Cavitation Erosion in Francis Turbines—Review of Latest Experimental and Numerical Techniques," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    7. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    8. Zhou, Xing & Shi, Changzheng & Miyagawa, Kazuyoshi & Wu, Hegao, 2021. "Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 606-617.
    9. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    10. Ivana Lučin & Ante Sikirica & Marija Šiško Kuliš & Zoran Čarija, 2022. "Investigation of Efficient Optimization Approach to the Modernization of Francis Turbine Draft Tube Geometry," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    11. Nedaei, Mojtaba & Walsh, Philip R., 2022. "Technical performance evaluation and optimization of a run-of-river hydropower facility," Renewable Energy, Elsevier, vol. 182(C), pages 343-362.
    12. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    2. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    3. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    4. Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.
    5. Chizfahm, A. & Yazdi, E. Azadi & Eghtesad, M., 2018. "Dynamic modeling of vortex induced vibration wind turbines," Renewable Energy, Elsevier, vol. 121(C), pages 632-643.
    6. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    7. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    8. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    9. Karamarković, Vladan M. & Nikolić, Miloš V. & Karamarković, Rade M. & Karamarković, Miodrag V. & Marašević, Miljan R., 2018. "Techno-economic optimization for two SHPPs that form a combined system," Renewable Energy, Elsevier, vol. 122(C), pages 265-274.
    10. Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
    11. Wei, Liangliang & Nakamura, Taketsune & Imai, Keita, 2020. "Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system," Renewable Energy, Elsevier, vol. 147(P1), pages 1653-1662.
    12. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    13. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    14. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    15. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    16. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    17. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    18. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    19. Seung-Jun Kim & Young-Seok Choi & Yong Cho & Jong-Woong Choi & Jung-Jae Hyun & Won-Gu Joo & Jin-Hyuk Kim, 2020. "Effect of Fins on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model," Energies, MDPI, vol. 13(11), pages 1-23, June.
    20. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.