Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.11.046
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Hakjin & Lee, Duck-Joo, 2019. "Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method," Renewable Energy, Elsevier, vol. 132(C), pages 1121-1133.
- Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
- Dose, B. & Rahimi, H. & Stoevesandt, B. & Peinke, J., 2020. "Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations," Renewable Energy, Elsevier, vol. 146(C), pages 1113-1123.
- Rodriguez, Steven N. & Jaworski, Justin W., 2020. "Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application," Renewable Energy, Elsevier, vol. 149(C), pages 1018-1031.
- Lee, Hak Min & Kwon, Oh Joon, 2020. "Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroealstic deformation," Renewable Energy, Elsevier, vol. 147(P1), pages 2128-2140.
- Rodriguez, Steven N. & Jaworski, Justin W., 2019. "Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 1: Numerical framework," Renewable Energy, Elsevier, vol. 141(C), pages 1127-1145.
- Wang, Lin & Liu, Xiongwei & Renevier, Nathalie & Stables, Matthew & Hall, George M., 2014. "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory," Energy, Elsevier, vol. 76(C), pages 487-501.
- Dose, B. & Rahimi, H. & Herráez, I. & Stoevesandt, B. & Peinke, J., 2018. "Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD," Renewable Energy, Elsevier, vol. 129(PA), pages 591-605.
- Yu, Dong Ok & Kwon, Oh Joon, 2014. "Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method," Renewable Energy, Elsevier, vol. 70(C), pages 184-196.
- Jeong, Min-Soo & Kim, Sang-Woo & Lee, In & Yoo, Seung-Jae & Park, K.C., 2013. "The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 60(C), pages 256-268.
- Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thiyagarajan Rameshkumar & Perumal Chandrasekar & Raju Kannadasan & Venkatraman Thiyagarajan & Mohammed H. Alsharif & James Hyungkwan Kim, 2022. "Electrical and Mechanical Characteristics Assessment of Wind Turbine System Employing Acoustic Sensors and Matrix Converter," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
- Chen, Chuan & Zhou, Jing-wei & Li, Fengming & Zhai, Endi, 2022. "Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: Theory and experiment," Renewable Energy, Elsevier, vol. 187(C), pages 710-727.
- Nakhchi, M.E. & Naung, S. Win & Dala, L. & Rahmati, M., 2022. "Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations," Renewable Energy, Elsevier, vol. 191(C), pages 669-684.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
- Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
- Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
- Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
- Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
- Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Haojie Kang & Bofeng Xu & Xiang Shen & Zhen Li & Xin Cai & Zhiqiang Hu, 2023. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition," Energies, MDPI, vol. 16(6), pages 1-13, March.
- Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
- Della Posta, Giacomo & Leonardi, Stefano & Bernardini, Matteo, 2022. "A two-way coupling method for the study of aeroelastic effects in large wind turbines," Renewable Energy, Elsevier, vol. 190(C), pages 971-992.
- Jia, Yaya & Huang, Jiachen & Liu, Qingkuan & Zhao, Zonghan & Dong, Menghui, 2024. "The wind tunnel test research on the aerodynamic stability of wind turbine airfoils," Energy, Elsevier, vol. 294(C).
- Ye, Maokun & Chen, Hamn-Ching & Koop, Arjen, 2023. "High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine," Energy, Elsevier, vol. 265(C).
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 264(C).
- Lapa, Gabriel Vicentin Pereira & Gay Neto, Alfredo & Franzini, Guilherme Rosa, 2023. "Effects of blade torsion on IEA 15MW turbine rotor operation," Renewable Energy, Elsevier, vol. 219(P2).
- de Oliveira, Marielle & Puraca, Rodolfo C. & Carmo, Bruno S., 2023. "A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale," Energy, Elsevier, vol. 283(C).
- Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
- Boatto, Umberto & Bonnet, Paul A. & Avallone, Francesco & Ragni, Daniele, 2023. "Assessment of Blade Element Momentum Theory-based engineering models for wind turbine rotors under uniform steady inflow," Renewable Energy, Elsevier, vol. 214(C), pages 307-317.
More about this item
Keywords
Wind turbines; Inflow wakes; Aerodynamics; Aeroelasticity; Computational fluid dynamics; Nonlinear frequency domain method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:66-81. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.