Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.126246
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang Zhou & Qing Xiao & Yuanchuan Liu & Atilla Incecik & Christophe Peyrard & Sunwei Li & Guang Pan, 2019. "Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves," Energies, MDPI, vol. 12(18), pages 1-31, September.
- Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
- Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
- de Oliveira, M. & Puraca, R.C. & Carmo, B.S., 2022. "Blade-resolved numerical simulations of the NREL offshore 5 MW baseline wind turbine in full scale: A study of proper solver configuration and discretization strategies," Energy, Elsevier, vol. 254(PB).
- Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
- Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
- Zhu, Xiaocheng & Sun, Chong & Ouyang, Hua & Du, Zhaohui, 2022. "Numerical investigation of the effect of towers and nacelles on the near wake of a horizontal-axis wind turbine model," Energy, Elsevier, vol. 238(PA).
- Qian, Yaoru & Wang, Tongguang & Yuan, Yiping & Zhang, Yuquan, 2020. "Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation," Energy, Elsevier, vol. 206(C).
- Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
- Dose, B. & Rahimi, H. & Stoevesandt, B. & Peinke, J., 2020. "Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations," Renewable Energy, Elsevier, vol. 146(C), pages 1113-1123.
- Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
- Rahimi, H. & Schepers, J.G. & Shen, W.Z. & García, N. Ramos & Schneider, M.S. & Micallef, D. & Ferreira, C.J. Simao & Jost, E. & Klein, L. & Herráez, I., 2018. "Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions," Renewable Energy, Elsevier, vol. 125(C), pages 866-876.
- Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
- Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
- Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
- Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
- Zhang, Tianyi & Wang, Wenhua & Li, Xin & Wang, Bin, 2023. "Vibration mitigation in offshore wind turbine under combined wind-wave-earthquake loads using the tuned mass damper inerter," Renewable Energy, Elsevier, vol. 216(C).
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
- Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
- Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
- Ye, Maokun & Chen, Hamn-Ching & Koop, Arjen, 2023. "High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine," Energy, Elsevier, vol. 265(C).
- Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
- Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
- Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
- Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
- Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).
- Sun, Qinghong & Li, Gen & Duan, Lei & He, Zanyang, 2023. "The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines," Energy, Elsevier, vol. 282(C).
- Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
- Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
- Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
- Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
- Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
- Win Naung, Shine & Rahmati, Mohammad & Farokhi, Hamed, 2021. "Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 66-81.
More about this item
Keywords
Wind turbine; Aerodynamic characteristics; Yawed inflow; Blade-tower interaction; Wake effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222031322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.