IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp81-90.html
   My bibliography  Save this article

Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures

Author

Listed:
  • Ding, Xin
  • Chen, Ruirun
  • Chen, Xiaoyu
  • Cao, Wenchao
  • Su, Yanqing
  • Ding, Hongsheng
  • Guo, Jingjie

Abstract

The addition of Cu is proved effective to improve the hydrogen storage property of hypoeutectic Mg–Ni alloy. In this study, Mg91Ni9-xCux (x = 3, 4.5, and 6) alloys are prepared by melting, and their isothermal de-/hydrogenation properties are characterized, especially at moderate temperatures. The results show that a much thicker eutectic structure is formed in Mg91Ni3Cu6 alloy, and the hydrogen storage properties deteriorate gradually with the Cu addition. Cu atoms can increase the lattice constants of Mg2Ni and Mg6.33Ni by replacing Ni atoms. After repeated absorption and desorption cycles, Mg2Ni/Cu crystals are preserved by forming high-density Mg2Ni/Cu nanophases, and the diffusion of H atoms and nucleation of hydrides are facilitated. Also, the nucleation of hydrides in Mg91Ni6Cu3 alloy are facilitated by the “synergistic effect”. Comparing with the Mg91Ni4.5Cu4.5 and Mg91Ni3Cu6 alloys, the Mg91Ni6Cu3 alloy shows a higher hydrogen capacity of 5.60 wt % with faster kinetic property at 175 °C under 1 MPa hydrogen. The Mg91Ni6Cu3 hydride shows the faster desorption rate at 225 °C. In Mg91Ni4.5Cu4.5 and Mg91Ni3Cu6 alloys, the Mg2Ni/Cu phases gradually transform into Mg2Cu-like phases, and the independent hydrogenation processes lead to their reduced hydrogen storage capacities.

Suggested Citation

  • Ding, Xin & Chen, Ruirun & Chen, Xiaoyu & Cao, Wenchao & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie, 2020. "Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures," Renewable Energy, Elsevier, vol. 166(C), pages 81-90.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:81-90
    DOI: 10.1016/j.renene.2020.11.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
    2. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    3. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    4. Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
    5. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    6. Sadhasivam, T. & Kim, Hee-Tak & Jung, Seunghun & Roh, Sung-Hee & Park, Jeong-Hun & Jung, Ho-Young, 2017. "Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 523-534.
    7. Xie, Lishuai & Li, Jinshan & Zhang, Tiebang & Kou, Hongchao, 2017. "De/hydrogenation kinetics against air exposure and microstructure evolution during hydrogen absorption/desorption of Mg-Ni-Ce alloys," Renewable Energy, Elsevier, vol. 113(C), pages 1399-1407.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng & Wang, Zexuan & Tian, Zhihui & Xia, Chaoqun & Yang, Tai & Liang, Chunyong & Li, Qiang, 2020. "Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: The catalytic effect of in-situ formed MgS and Mg2NiH4 phases," Renewable Energy, Elsevier, vol. 160(C), pages 409-417.
    2. Yuan, Zhenluo & Zhang, Dafeng & Fan, Guangxin & Chen, Yumei & Fan, Yanping & Liu, Baozhong, 2022. "N-doped carbon coated Ti3C2 MXene as a high-efficiency catalyst for improving hydrogen storage kinetics and stability of NaAlH4," Renewable Energy, Elsevier, vol. 188(C), pages 778-787.
    3. Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
    4. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    5. Omar Mounkachi & Asmae Akrouchi & Ghassane Tiouitchi & Marwan Lakhal & Elmehdi Salmani & Abdelilah Benyoussef & Abdelkader Kara & Abdellah El Kenz & Hamid Ez-Zahraouy & Amine El Moutaouakil, 2021. "Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH 2 Thin Films," Energies, MDPI, vol. 14(22), pages 1-10, November.
    6. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage," Renewable Energy, Elsevier, vol. 198(C), pages 1186-1192.
    7. Wang, Zexuan & Tian, Zhihui & Yao, Pufan & Zhao, Huimin & Xia, Chaoqun & Yang, Tai, 2022. "Improved hydrogen storage kinetic properties of magnesium-based materials by adding Ni2P," Renewable Energy, Elsevier, vol. 189(C), pages 559-569.
    8. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    9. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    10. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    11. Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    12. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    13. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    14. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    15. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    16. Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
    17. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    18. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    19. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    20. Carlos A. Castilla-Martinez & Romain Moury & Salem Ould-Amara & Umit B. Demirci, 2021. "Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances," Energies, MDPI, vol. 14(21), pages 1-50, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:81-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.