IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp828-839.html
   My bibliography  Save this article

Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy

Author

Listed:
  • Yong, Hui
  • Guo, Shihai
  • Yuan, Zeming
  • Qi, Yan
  • Zhao, Dongliang
  • Zhang, Yanghuan

Abstract

To clarify the effect of Mg2Ni and REHx (RE: Ce and Y) on the thermodynamics and kinetics of Mg-RE-Ni alloys, a series of quaternary Mg–Ce–Y–Ni alloys with different RE and Ni contents were prepared by vacuum induction melting. Their microstructure, phase composition, and the hydrogen storage performance were investigated by using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and Sievert’s-type apparatus. The results indicate that the alloys are mainly composed of the REMgx phase, Mg2Ni phase, and Mg phase, and the change of RE and Ni contents did not change the phase composition but affected the phase content and micro-eutectic morphology. After hydrogenation, the REMgx phase was decomposed into irreversible REHx grains and dispersed in the MgH2 matrix together with Mg2NiH4 grains, which result in an outstanding kinetics performance. By contrast, the REHx phase is more favorable for hydrogen absorption, while Mg2NiH4 is more favorable for hydrogen desorption, which attributes to their independent catalytic mechanisms. Also, the finer microstructure induced a slight decrease in thermodynamics. The Ni5 alloy has an optimal comprehensive hydrogen storage performance, which can absorb 5 wt% H2 within 2 min and release the same amount of hydrogen at 300 °C within 10 min.

Suggested Citation

  • Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:828-839
    DOI: 10.1016/j.renene.2020.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jigang & Guo, Yanru & Jiang, Xiaojing & Li, Shuan & Li, Xingguo, 2020. "Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe," Renewable Energy, Elsevier, vol. 153(C), pages 1140-1154.
    2. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    3. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.
    4. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    5. Yuan, Zeming & Zhang, Yanghuan & Yang, Tai & Bu, Wengang & Guo, Shihai & Zhao, Dongliang, 2018. "Microstructure and enhanced gaseous hydrogen storage behavior of CoS2-catalyzed Sm5Mg41 alloy," Renewable Energy, Elsevier, vol. 116(PA), pages 878-891.
    6. Xie, Lishuai & Li, Jinshan & Zhang, Tiebang & Kou, Hongchao, 2017. "De/hydrogenation kinetics against air exposure and microstructure evolution during hydrogen absorption/desorption of Mg-Ni-Ce alloys," Renewable Energy, Elsevier, vol. 113(C), pages 1399-1407.
    7. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2020. "Significantly decreased stability of MgH2 in the Mg-In-C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys?," Renewable Energy, Elsevier, vol. 150(C), pages 204-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Zhenluo & Zhang, Dafeng & Fan, Guangxin & Chen, Yumei & Fan, Yanping & Liu, Baozhong, 2022. "N-doped carbon coated Ti3C2 MXene as a high-efficiency catalyst for improving hydrogen storage kinetics and stability of NaAlH4," Renewable Energy, Elsevier, vol. 188(C), pages 778-787.
    2. Ding, Xin & Chen, Ruirun & Chen, Xiaoyu & Cao, Wenchao & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie, 2020. "Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures," Renewable Energy, Elsevier, vol. 166(C), pages 81-90.
    3. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg," Renewable Energy, Elsevier, vol. 188(C), pages 411-424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong, Hui & Wei, Xin & Hu, Jifan & Yuan, Zeming & Wu, Ming & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy," Renewable Energy, Elsevier, vol. 162(C), pages 2153-2165.
    2. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage," Renewable Energy, Elsevier, vol. 198(C), pages 1186-1192.
    3. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    4. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    5. Ding, Xin & Chen, Ruirun & Chen, Xiaoyu & Cao, Wenchao & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie, 2020. "Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures," Renewable Energy, Elsevier, vol. 166(C), pages 81-90.
    6. Wang, Peng & Wang, Zexuan & Tian, Zhihui & Xia, Chaoqun & Yang, Tai & Liang, Chunyong & Li, Qiang, 2020. "Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: The catalytic effect of in-situ formed MgS and Mg2NiH4 phases," Renewable Energy, Elsevier, vol. 160(C), pages 409-417.
    7. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.
    8. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    9. Bai, Xiao-Shuai & Rong, Long & Yang, Wei-Wei & Yang, Fu-Sheng, 2023. "Effective thermal conductivity of metal hydride particle bed: Theoretical model and experimental validation," Energy, Elsevier, vol. 271(C).
    10. Luis Obregon & Guillermo Valencia & Jorge Duarte, 2019. "Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 492-502.
    11. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    12. Carlos A. Castilla-Martinez & Romain Moury & Salem Ould-Amara & Umit B. Demirci, 2021. "Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances," Energies, MDPI, vol. 14(21), pages 1-50, October.
    13. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    14. Li, Jigang & Guo, Yanru & Jiang, Xiaojing & Li, Shuan & Li, Xingguo, 2020. "Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe," Renewable Energy, Elsevier, vol. 153(C), pages 1140-1154.
    15. Zhang, Yao & Zhang, Yuxin & Gong, Chao & Dinçer, Hasan & Yüksel, Serhat, 2022. "An integrated hesitant 2-tuple Pythagorean fuzzy analysis of QFD-based innovation cost and duration for renewable energy projects," Energy, Elsevier, vol. 248(C).
    16. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    17. Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.
    18. Hardik K. Jani & Surendra Singh Kachhwaha & Garlapati Nagababu & Alok Das & MA Ehyaei, 2023. "Energy, exergy, economic, environmental, advanced exergy and exergoeconomic (extended exergy) analysis of hybrid wind-solar power plant," Energy & Environment, , vol. 34(7), pages 2668-2704, November.
    19. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    20. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:828-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.