IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7737-d682029.html
   My bibliography  Save this article

Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH 2 Thin Films

Author

Listed:
  • Omar Mounkachi

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco
    Modeling, Simulation & Data Analysis Program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Asmae Akrouchi

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco)

  • Ghassane Tiouitchi

    (Modeling, Simulation & Data Analysis Program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Marwan Lakhal

    (Ecole Supérieure de Technologie de Laâyoune, Ibn Zohr University, Laayoune BP 3007, Morocco)

  • Elmehdi Salmani

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco)

  • Abdelilah Benyoussef

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco
    Hassan II Academy of Sciences and Techniques, Mohammed V University, Rabat BP 1014, Morocco)

  • Abdelkader Kara

    (Department of Physics, University of Central Florida, Orlando, FL 32816, USA)

  • Abdellah El Kenz

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco)

  • Hamid Ez-Zahraouy

    (Laboratory of Condensed Matter and Sciences Interdisciplinary, Faculty of Science, Mohammed V University, Rabat BP 1014, Morocco)

  • Amine El Moutaouakil

    (Department of Electrical and Communication Engineering, College of Engineering, United Arab University, Abu Dhabi, P.O. Box 15551, Al Ain 15551, United Arab Emirates)

Abstract

Magnesium is an attractive hydrogen storage candidate due to its high gravimetric and volumetric storage capacities (7.6 wt.% and 110 gH 2 /l, respectively). Unfortunately, its use as a storage material for hydrogen is hampered by the high stability of its hydride, its high dissociation temperature of 573–673 K and its slow reaction kinetics. In order to overcome those drawbacks, an important advancement toward controlling the enthalpy and desorption temperatures of nano-structured MgH 2 thin films via stress/strain and size effects is presented in this paper, as the effect of the nano-structuring of the bulk added to a biaxial strain on the hydrogen storage properties has not been previously investigated. Our results show that the formation heat and decomposition temperature correlate with the thin film’s thickness and strain/stress effects. The instability created by decreasing the thickness of MgH 2 thin films combined with the stress/strain effects induce a significant enhancement in the hydrogen storage properties of MgH 2 .

Suggested Citation

  • Omar Mounkachi & Asmae Akrouchi & Ghassane Tiouitchi & Marwan Lakhal & Elmehdi Salmani & Abdelilah Benyoussef & Abdelkader Kara & Abdellah El Kenz & Hamid Ez-Zahraouy & Amine El Moutaouakil, 2021. "Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH 2 Thin Films," Energies, MDPI, vol. 14(22), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7737-:d:682029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    2. Sadhasivam, T. & Kim, Hee-Tak & Jung, Seunghun & Roh, Sung-Hee & Park, Jeong-Hun & Jung, Ho-Young, 2017. "Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 523-534.
    3. Omnia Samy & Amine El Moutaouakil, 2021. "A Review on MoS 2 Energy Applications: Recent Developments and Challenges," Energies, MDPI, vol. 14(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Xin & Chen, Ruirun & Chen, Xiaoyu & Cao, Wenchao & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie, 2020. "Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures," Renewable Energy, Elsevier, vol. 166(C), pages 81-90.
    2. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    3. Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    5. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    6. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    8. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    9. Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
    10. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    11. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    12. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    13. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    14. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    15. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    16. Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.
    17. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    20. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7737-:d:682029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.