IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp976-985.html
   My bibliography  Save this article

A novel stationary concentrator to enhance solar intensity with absorber-only single axis tracking

Author

Listed:
  • Sharma, Manoj Kumar
  • Bhattacharya, Jishnu

Abstract

Enhancement of solar intensity is achieved through concentrator which focuses direct normal irradiance to a smaller area. Such redirection necessitates aligned movement of the whole assembly along the apparent motion of the sun. The motion of a bulky system consumes significant power during the operation, thereby reducing the effective energy collection efficiency. Therefore, a static geometry which does not require tracking the sun is desirable as concentrating optics. Here, we propose such a novel static concentrator based on cylindrical Fresnel lens. Only the absorber is given a single axis tracking motion. A systematic optimization is performed to select the geometrical parameters which maximize the solar intensity and minimize the intensity-non-uniformity. For a Silicone glass cylinder of 20 cm diameter, we find an absorber of width 5 cm, placed at a distance of 11 cm from the axis of the concentrator provides the maximum intensity and the minimum intensity-non-uniformity when the vertex angle of the Frensel lens is 37°. The study demonstrates that the procedure to perform such geometry optimization is straightforwardly extendable. We demonstrate that the annual average intensity on the absorber can be enhanced by over ∼50% with lower operational cost and a meagre increase in the initial cost.

Suggested Citation

  • Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2020. "A novel stationary concentrator to enhance solar intensity with absorber-only single axis tracking," Renewable Energy, Elsevier, vol. 154(C), pages 976-985.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:976-985
    DOI: 10.1016/j.renene.2020.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030389X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    2. Nuwayhid, R.Y. & Mrad, F. & Abu-Said, R., 2001. "The realization of a simple solar tracking concentrator for university research applications," Renewable Energy, Elsevier, vol. 24(2), pages 207-222.
    3. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    4. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    5. Wang, Gang & Wang, Fasi & Chen, Zeshao & Hu, Peng & Cao, Ruifeng, 2019. "Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system," Renewable Energy, Elsevier, vol. 134(C), pages 284-291.
    6. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    7. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2022. "Dependence of spectral factor on angle of incidence for monocrystalline silicon based photovoltaic solar panel," Renewable Energy, Elsevier, vol. 184(C), pages 820-829.
    2. Yan, Suying & Zhao, Sitong & Ma, Xiaodong & Ming, Tingzhen & Wu, Ze & Zhao, Xiaoyan & Ma, Rui, 2020. "Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities," Renewable Energy, Elsevier, vol. 159(C), pages 801-811.
    3. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Deciding between concentrated and non-concentrated photovoltaic systems via direct comparison of experiment with opto-thermal computation," Renewable Energy, Elsevier, vol. 178(C), pages 1084-1096.
    4. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
    5. Tuğçe Demirdelen & Hakan Alıcı & Burak Esenboğa & Manolya Güldürek, 2023. "Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate," Energies, MDPI, vol. 16(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    2. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    3. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    4. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    6. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2021. "The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems," Renewable Energy, Elsevier, vol. 172(C), pages 541-550.
    7. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    8. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    9. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    10. Khordehgah, Navid & Guichet, Valentin & Lester, Stephen P. & Jouhara, Hussam, 2019. "Computational study and experimental validation of a solar photovoltaics and thermal technology," Renewable Energy, Elsevier, vol. 143(C), pages 1348-1356.
    11. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    12. Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
    13. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    14. Mirzaei, Mohsen & Mohiabadi, Mostafa Zamani, 2018. "Comparative analysis of energy yield of different tracking modes of PV systems in semiarid climate conditions: The case of Iran," Renewable Energy, Elsevier, vol. 119(C), pages 400-409.
    15. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    16. Talka, Ismo & Kolhe, Mohan & Hyttinen, Jarkko, 2017. "Impact of wind speed on ventilation performance within a container installed with photovoltaic inverter," Renewable Energy, Elsevier, vol. 113(C), pages 1480-1489.
    17. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    19. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2019. "Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations," Energy, Elsevier, vol. 179(C), pages 111-128.
    20. Saeed Rubaiee & M. A. Fazal, 2022. "The Influence of Various Solar Radiations on the Efficiency of a Photovoltaic Solar Module Integrated with a Passive Cooling System," Energies, MDPI, vol. 15(24), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:976-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.