IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp229-241.html
   My bibliography  Save this article

Design methodology of a parabolic trough collector field for maximum annual energy yield

Author

Listed:
  • Singh, Manmeet
  • Sharma, Manoj Kumar
  • Bhattacharya, Jishnu

Abstract

Improving efficiency and yield of a parabolic trough collector (PTC) field is of paramount technological importance. Here, an attempt toward this goal is made through combined optical and thermal simulation. Two major factors that affect the performance of an individual trough are mass flow rate and aperture width, which scales with rim angle. Performance of PTC-field is observed to have a non-linear scale-up rule as opposed to the same for an individual trough. Wider aperture leads to higher heat collection for individual trough; however, the same results in higher inter-trough shading limiting the number of troughs in a field and the effective unshaded hours. It also depends on insolation and latitude. Therefore, there lies a possibility of trade-off where flow rate, rim angle and design hours of operation require careful tuning to maximize annual energy yield. Here, a step by step procedure is demonstrated for Kanpur, India where optimal values of flow rate, rim angle and hours of operation are obtained to be 1.1 kg/s (for Syltherm 800 as the heat transfer fluid), 70° and 4 h around solar noon on winter solstice day, respectively. The methodology is illustrated to be generally applicable to any location or working fluid.

Suggested Citation

  • Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:229-241
    DOI: 10.1016/j.renene.2021.05.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    2. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2020. "A novel stationary concentrator to enhance solar intensity with absorber-only single axis tracking," Renewable Energy, Elsevier, vol. 154(C), pages 976-985.
    3. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    4. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    5. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    6. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    7. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    8. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    9. Castellano, Nuria Novas & Gázquez Parra, José Antonio & Valls-Guirado, Juan & Manzano-Agugliaro, Francisco, 2015. "Optimal displacement of photovoltaic array’s rows using a novel shading model," Applied Energy, Elsevier, vol. 144(C), pages 1-9.
    10. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios," Energy, Elsevier, vol. 73(C), pages 606-617.
    11. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    12. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaaban, S., 2023. "Part load operation of an integrated solar combined cycle using the brine heater of a MSF desalination unit as a steam condenser," Renewable Energy, Elsevier, vol. 212(C), pages 212-226.
    2. Shaaban, S., 2024. "Performance optimization of an integrated solar combined cycle for the cogeneration of electricity and fresh water," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    3. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    4. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    5. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    6. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    7. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    8. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    9. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    10. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    11. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    12. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Serrano-Aguilera, J.J. & Valenzuela, L. & Parras, L., 2014. "Thermal 3D model for Direct Solar Steam Generation under superheated conditions," Applied Energy, Elsevier, vol. 132(C), pages 370-382.
    14. Chaanaoui, Meriem & Vaudreuil, Sébastien & Eddouibi, Jaouad & Ladouy, Sara & Abderafi, Souad & Bounahmidi, Tijani, 2024. "A detailed 1D model of a parabolic trough solar receiver with a double-validation approach," Energy, Elsevier, vol. 294(C).
    15. Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
    16. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    17. Liang, Hongbo & Fan, Man & You, Shijun & Zheng, Wandong & Zhang, Huan & Ye, Tianzhen & Zheng, Xuejing, 2017. "A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 201(C), pages 60-68.
    18. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    19. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
    20. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:229-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.