IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016920.html
   My bibliography  Save this article

An statistical model for the short-term albedo estimation applied to PV bifacial modules

Author

Listed:
  • Ortega, Eneko
  • Suarez, Sergio
  • Jimeno, Juan Carlos
  • Gutierrez, Jose Rubén
  • Fano, Vanesa
  • Otaegi, Aloña
  • Rivas, Jose Manuel
  • Navas, Gustavo
  • Fernandez, Ignacio
  • Rodriguez-Conde, Sofia

Abstract

Albedo estimation is an essential input parameter for bifacial PV modules. However, there was no clear agreement on which albedo values should be used and how they should be measured, either with satellite measurements or using onsite measurements which can be obtained from nearby meteorological stations. Since long-term measurements are not always available for new PV system locations, short-term albedo measurements are also used as input parameters in PV system performance estimation models. Short-term albedo presents high variability due to factors such as weather, seasonality or changes in the surrounding surface among others. In addition, apparently random albedo variations of 60% can be observed, even during consecutive days or within the same day. Therefore, this study presents a two-parameter exponential model that modelates the albedo data statistical distribution with an error of less than 5% in all cases and from which it is possible to determine the reliability of the obtained data. This model has been evaluated at a set of locations, with different surface types and climates, and assessed using onsite and satellite data. The impact of the methodology used to estimate the albedo data uncertainty and its reliability has also been studied as a function of several parameters such as the global horizontal irradiance and measurement time, allowing the process optimization and enhancing its reliability.

Suggested Citation

  • Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016920
    DOI: 10.1016/j.renene.2023.119777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    2. Li, Zhenchao & Zhao, Yanyan & Luo, Yong & Yang, Liwei & Li, Peidu & Jin, Xiao & Jiang, Junxia & Liu, Rong & Gao, Xiaoqing, 2022. "A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi desert," Renewable Energy, Elsevier, vol. 182(C), pages 764-771.
    3. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    4. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    5. Ziar, Hesan & Sönmez, Furkan Fatih & Isabella, Olindo & Zeman, Miro, 2019. "A comprehensive albedo model for solar energy applications: Geometric spectral albedo," Applied Energy, Elsevier, vol. 255(C).
    6. Baloch, Ahmer A.B. & Hammat, Said & Figgis, Benjamin & Alharbi, Fahhad H. & Tabet, Nouar, 2020. "In-field characterization of key performance parameters for bifacial photovoltaic installation in a desert climate," Renewable Energy, Elsevier, vol. 159(C), pages 50-63.
    7. Radovan Kopecek & Joris Libal, 2021. "Bifacial Photovoltaics 2021: Status, Opportunities and Challenges," Energies, MDPI, vol. 14(8), pages 1-16, April.
    8. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    3. Hayibo, Koami Soulemane & Petsiuk, Aliaksei & Mayville, Pierce & Brown, Laura & Pearce, Joshua M., 2022. "Monofacial vs bifacial solar photovoltaic systems in snowy environments," Renewable Energy, Elsevier, vol. 193(C), pages 657-668.
    4. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    5. Bartłomiej Mroczek & Paweł Pijarski, 2021. "DSO Strategies Proposal for the LV Grid of the Future," Energies, MDPI, vol. 14(19), pages 1-19, October.
    6. Bartosz Wachnik & Zbigniew Chyba, 2021. "Key Growth Factors and Limitations of Photovoltaic Companies in Poland and the Phenomenon of Technology Entrepreneurship under Conditions of Information Asymmetry," Energies, MDPI, vol. 14(24), pages 1-16, December.
    7. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    8. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    9. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    11. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    12. Guerrero-Lemus, R. & Vega, R. & Kim, Taehyeon & Kimm, Amy & Shephard, L.E., 2016. "Bifacial solar photovoltaics – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1533-1549.
    13. Justyna Cader & Renata Koneczna & Piotr Olczak, 2021. "The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    14. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    16. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    17. Eva-Maria Grommes & Ulf Blieske & Jean-Régis Hadji-Minaglou, 2023. "Positive Impact of Red Soil on Albedo and the Annual Yield of Bifacial Photovoltaic Systems in Ghana," Energies, MDPI, vol. 16(4), pages 1-12, February.
    18. Smith, Duncan E. & Hughes, Michael D. & Borca-Tasciuc, Diana-Andra, 2022. "Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics," Renewable Energy, Elsevier, vol. 186(C), pages 469-485.
    19. Michelle Kitayama da Silva & Mehreen Saleem Gul & Hassam Chaudhry, 2021. "Review on the Sources of Power Loss in Monofacial and Bifacial Photovoltaic Technologies," Energies, MDPI, vol. 14(23), pages 1-29, November.
    20. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.