IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1261-1270.html
   My bibliography  Save this article

Small-scale autothermal thermochemical conversion of multiple solid biomass feedstock

Author

Listed:
  • Kirch, Thomas
  • Medwell, Paul R.
  • Birzer, Cristian H.
  • van Eyk, Philip J.

Abstract

The thermochemical conversion of four types of biomass in a batch-fed reverse downdraft process for heat generation in cookstoves is investigated. Fuel switching is widely considered inefficient because many combustion devices do not respond well to changes in fuel. Here, the use of agricultural by-products, represented by wheat straw, sheep manure, cow manure, and wood pellets is addressed. Two air supply rates within the oxygen-limited regime, where the fuel consumption is linearly dependent on the air supply, are investigated. At higher air supply rates, in the reaction-limited regime, low carbon yields lead to the exposure of the ash fraction to high temperatures, such that the resultant ash melting has detrimental effects on the process. Generally, no detrimental impact of the ash content on the conversion process within the oxygen-limited regime could be identified. The release of gaseous products, evaluated through cold gas efficiency, increases linearly from 24 to 54% with higher air flow, corresponding to increasing process temperatures from 690 to 980 °C, and is largely fuel type independent. The char produced from all feedstocks fall within the highest classification for biochars, based on its elemental composition and determined by international protocols. This emphasises the potential of the investigated process for a combined production of producer gas and biochar from a variety of low-value biomass feedstocks.

Suggested Citation

  • Kirch, Thomas & Medwell, Paul R. & Birzer, Cristian H. & van Eyk, Philip J., 2020. "Small-scale autothermal thermochemical conversion of multiple solid biomass feedstock," Renewable Energy, Elsevier, vol. 149(C), pages 1261-1270.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1261-1270
    DOI: 10.1016/j.renene.2019.10.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    2. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    3. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    4. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    5. Roy, Prokash C. & Datta, Amitava & Chakraborty, Niladri, 2010. "Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 35(2), pages 379-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bandara, Janitha C. & Jaiswal, Rajan & Nielsen, Henrik K. & Moldestad, Britt M.E. & Eikeland, Marianne S., 2021. "Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 233(C).
    2. Quintero-Coronel, Daniel A. & Salazar, Adalberto & Pupo-Roncallo, Oscar R. & Bula, Antonio & Corredor, Lesme & Amador, German & Gonzalez-Quiroga, Arturo, 2023. "Assessment of the interchangeability of coal-biomass syngas with natural gas for atmospheric burners and high-pressure combustion applications," Energy, Elsevier, vol. 276(C).
    3. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    2. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    3. Yilmaz, Harun & Yilmaz, Ilker, 2019. "Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number," Energy, Elsevier, vol. 172(C), pages 117-133.
    4. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    5. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    6. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    7. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    8. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    9. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    10. Ghorbani, Saba & Atashkari, Kazem & Borji, Mehdi, 2022. "Three-stage model-based evaluation of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 734-745.
    11. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    12. Yogesh Mehta & Cecilia Richards, 2017. "Gasification Performance of a Top-Lit Updraft Cook Stove," Energies, MDPI, vol. 10(10), pages 1-11, October.
    13. Michel Feidt & Gheorghe Dumitrascu & Ana-Georgiana Lupu, 2023. "Chemical Modeling of Constant-Volume Combustion of the Mixture of Methane and Hydrogen Used in Spark Ignition Otto Cycles," Energies, MDPI, vol. 16(12), pages 1-27, June.
    14. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    15. Rukshan Jayathilake & Souman Rudra, 2017. "Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification," Energies, MDPI, vol. 10(8), pages 1-19, August.
    16. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).
    17. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    18. Hamed Atajafari & Birendra Raj Pathak & Ramchandra Bhandari, 2024. "Thermal Performance Evaluation of a Single-Mouth Improved Cookstove: Theoretical Approach Compared with Experimental Data," Energies, MDPI, vol. 17(17), pages 1-19, August.
    19. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    20. Guohui Song & Qi Zhao & Baohua Shao & Hao Zhao & Hongyan Wang & Wenyi Tan, 2023. "Life Cycle Assessment of Greenhouse Gas (GHG) and NO x Emissions of Power-to-H 2 -to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1261-1270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.