IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp117-133.html
   My bibliography  Save this article

Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number

Author

Listed:
  • Yilmaz, Harun
  • Yilmaz, Ilker

Abstract

This paper presents the results of experimental studies conducted on premixed CNG/H2/CO/CO2 blending synthetic gas flames in a laboratory scale combustor, with particular emphasis on effects of swirl number (from 0.2 to 1.6, at intervals of 0.2) and equivalence ratio (0.6, 0.8 and 1.0) on combustion and emission characteristics of such mixtures. Furthermore, effects of swirl number on lean blowout and flashback limits of studied mixtures were also investigated. Irrespective of the swirl number and equivalence ratio, H2/CO ratios of tested gas mixtures were kept constant (1.0), and mixtures of H2/CO/CNG/CO2 which were diluted with different amount of CO2 (0–20%, at intervals of 5%) were derived. Considering broadest operating range, mixture of 20%CNG/30%H2/30%CO/20%CO2 was determined as base fuel to be tested. Combustion and emission behavior of tested gas mixtures were assessed by examining axial and radial temperature, NOx, CO and CO2 distributions. Besides, swirl number and equivalence ratio effects on flame structure were evaluated by investigating instantaneous flame images (with the same focal length and exposure time). Results of this study showed that effects of swirl number on flame characteristics (temperature and pollutant emission distributions) is not monotonous, and equivalence ratio dependent flame behavior alters differently at different swirl numbers.

Suggested Citation

  • Yilmaz, Harun & Yilmaz, Ilker, 2019. "Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number," Energy, Elsevier, vol. 172(C), pages 117-133.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:117-133
    DOI: 10.1016/j.energy.2019.01.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    2. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    3. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    4. Valera-Medina, A. & Vigueras-Zuniga, M.O. & Baej, H. & Syred, N. & Chong, C.T. & Bowen, P.J., 2017. "Outlet geometrical impacts on blowoff effects when using various syngas mixtures in swirling flows," Applied Energy, Elsevier, vol. 207(C), pages 195-207.
    5. Syred, N. & Giles, A. & Lewis, J. & Abdulsada, M. & Valera Medina, A. & Marsh, R. & Bowen, P.J. & Griffiths, A.J., 2014. "Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner," Applied Energy, Elsevier, vol. 116(C), pages 288-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Jeon, Yuseon & Nam, Hyeon Taek & Lee, Seungro, 2024. "Combustion and emission characteristics for various swirler geometries and fuel heating values in a premixed low swirl combustor system," Energy, Elsevier, vol. 303(C).
    3. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    4. Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
    5. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    6. Park, Yeseul & Li, Xinzhuo & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2022. "Fuel interchangeability investigation of new Russian PNG for conventional gas appliances," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco-Osvaldo Vigueras-Zuniga & Maria-Elena Tejeda-del-Cueto & José-Alejandro Vasquez-Santacruz & Agustín-Leobardo Herrera-May & Agustin Valera-Medina, 2020. "Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends," Energies, MDPI, vol. 13(2), pages 1-17, January.
    2. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    3. Hatem, F.A. & Alsaegh, A.S. & Al-Faham, M. & Valera-Medina, A. & Chong, C.T. & Hassoni, S.M., 2018. "Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners," Applied Energy, Elsevier, vol. 230(C), pages 946-959.
    4. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    5. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    6. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    7. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Marwan Abdullah & Thibault F. Guiberti & Radi A. Alsulami, 2023. "Experimental Assessment on the Coupling Effect of Mixing Length and Methane-Ammonia Blends on Flame Stability and Emissions," Energies, MDPI, vol. 16(7), pages 1-12, March.
    9. Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
    10. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    11. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    12. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    13. Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
    14. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    15. Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).
    16. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    17. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    18. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    20. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:117-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.