IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2955-d1105784.html
   My bibliography  Save this article

Experimental Assessment on the Coupling Effect of Mixing Length and Methane-Ammonia Blends on Flame Stability and Emissions

Author

Listed:
  • Marwan Abdullah

    (Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Thibault F. Guiberti

    (Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Radi A. Alsulami

    (Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Lean premixed combustion mode has become attractive for utilization in industrial gas turbines due to its ability to meet strict emissions regulations without compromising engine efficiency. In this combustion mode, the mixing process is the key player that affect the flame structure and stability, as well as the generated emissions. Many studies have investigated the aspects that influence premixed flames, including the effects of turbulence, combustor geometry, and level of partial premixing, while mostly using conventional natural gas fuel represented by methane. Recently, ammonia, a sustainable energy source, has been considered in gas turbines due to its carbon-free fuel producing no CO 2 . Utilizing 100% ammonia or a blend of methane and ammonia alters the combustion performance of a premixed flame due to the variation associated with the physical and chemical properties of ammonia. Thus, investigating the coupling between blend ratios and mixing length of methane-ammonia on flame stability and emissions is an essential step toward implementing ammonia in industrial gas turbines. In this study, the influence of various methane-ammonia blends, from 0 (pure methane) to X NH3 = 75%, and mixing lengths on the flame performance were studied. The mixing length was altered by delaying the injection (i.e., partially premixing) of the ammonia while using a fixed injection location for the reference methane-air mixture. This was done by using three fuel ports located at three different heights upstream of the combustion chamber. The results showed that the flame stability is negatively influenced by increasing (decreasing) ammonia fraction (mixing length ratio) and is more sensitive to the ammonia fraction than to the mixing length. At a constant equivalence ratio, the CO and NOx performances improved positively by increasing the ammonia volume fractions (especially at X NH3 = 75% compared to X NH3 = 25% and 50%) and the mixing length.

Suggested Citation

  • Marwan Abdullah & Thibault F. Guiberti & Radi A. Alsulami, 2023. "Experimental Assessment on the Coupling Effect of Mixing Length and Methane-Ammonia Blends on Flame Stability and Emissions," Energies, MDPI, vol. 16(7), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2955-:d:1105784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Namsu Kim & Minjung Lee & Juwon Park & Jeongje Park & Taesong Lee, 2022. "A Comparative Study of NO x Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia," Energies, MDPI, vol. 15(24), pages 1-15, December.
    2. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    3. Marco Osvaldo Vigueras-Zúñiga & Maria Elena Tejeda-del-Cueto & Syed Mashruk & Marina Kovaleva & Cesar Leonardo Ordóñez-Romero & Agustin Valera-Medina, 2021. "Methane/Ammonia Radical Formation during High Temperature Reactions in Swirl Burners," Energies, MDPI, vol. 14(20), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abay Mukhamediyarovich Dostiyarov & Dias Raybekovich Umyshev & Andrey Anatolievich Kibarin & Ayaulym Konusbekovna Yamanbekova & Musagul Elekenovich Tumanov & Gulzira Ainadinovna Koldassova & Maxat Arg, 2024. "Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture," Energies, MDPI, vol. 17(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    2. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
    4. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    5. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    6. Yilmaz, Harun & Yilmaz, Ilker, 2019. "Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number," Energy, Elsevier, vol. 172(C), pages 117-133.
    7. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    8. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    9. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    10. Weilin Zeng & Xujiang Wang & Kai Hong Luo & Konstantina Vogiatzaki & Salvador Navarro-Martinez, 2024. "A Generalised Series Model for the LES of Premixed and Non-Premixed Turbulent Combustion," Energies, MDPI, vol. 17(1), pages 1-17, January.
    11. Ye, Jianan & Xie, Min & Zhang, Shiping & Huang, Ying & Liu, Mingbo & Wang, Qiong, 2023. "Stochastic optimal scheduling of electricity–hydrogen enriched compressed natural gas urban integrated energy system," Renewable Energy, Elsevier, vol. 211(C), pages 1024-1044.
    12. Wu, Yuwen & Weng, Chunsheng & Zheng, Quan & Wei, Wanli & Bai, Qiaodong, 2021. "Experimental research on the performance of a rotating detonation combustor with a turbine guide vane," Energy, Elsevier, vol. 218(C).
    13. Marco Sorrentino & Antonio Adamo & Gianmarco Nappi, 2019. "Self-Sufficient and Islanded-Oriented Design of a Reversible Solid Oxide Cell-Based Renewable Microgrid," Energies, MDPI, vol. 12(17), pages 1-15, August.
    14. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    15. Michel Feidt & Gheorghe Dumitrascu & Ana-Georgiana Lupu, 2023. "Chemical Modeling of Constant-Volume Combustion of the Mixture of Methane and Hydrogen Used in Spark Ignition Otto Cycles," Energies, MDPI, vol. 16(12), pages 1-27, June.
    16. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    17. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    18. Guohui Song & Qi Zhao & Baohua Shao & Hao Zhao & Hongyan Wang & Wenyi Tan, 2023. "Life Cycle Assessment of Greenhouse Gas (GHG) and NO x Emissions of Power-to-H 2 -to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine," Energies, MDPI, vol. 16(2), pages 1-14, January.
    19. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    20. Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2955-:d:1105784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.