IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i2p379-386.html
   My bibliography  Save this article

Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier

Author

Listed:
  • Roy, Prokash C.
  • Datta, Amitava
  • Chakraborty, Niladri

Abstract

A model of downdraft gasifier has been described considering thermodynamic equilibrium of species in the pyro-oxidation zone and kinetically controlled reduction reactions in the reduction zone. It is found that the sole use of cow dung as the gasifier fuel is not technically feasible. This is due to very low heating value of the producer gas with much carbon leaving the gasifier as char. However, cow dung can be used as a supplementary fuel blended with a conventional woody biomass, like sawdust. The increased fraction of cow dung in the fuel blend renders the gasification process less efficient, when the gasifier is operated at a particular equivalence ratio. Both the producer gas production rate and its heating value reduce with the increase in the cow dung content in the biomass fuel blend, leading to an overall reduction in the gasifier conversion efficiency. It is observed that an increase in the cow dung content from 0 to 90% in the blended fuel reduces the heating value by 46.8% and the conversion efficiency by 45%. The use of cow dung in between 40 and 50% by mass in the fuel mix would result in an overall fuel economy.

Suggested Citation

  • Roy, Prokash C. & Datta, Amitava & Chakraborty, Niladri, 2010. "Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 35(2), pages 379-386.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:379-386
    DOI: 10.1016/j.renene.2009.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    2. Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
    3. Ruggiero, M. & Manfrida, G., 1999. "An equilibrium model for biomass gasification processes," Renewable Energy, Elsevier, vol. 16(1), pages 1106-1109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gueguim Kana, E.B. & Oloke, J.K. & Lateef, A. & Adesiyan, M.O., 2012. "Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm," Renewable Energy, Elsevier, vol. 46(C), pages 276-281.
    2. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    3. Masmoudi, Mohamed Ali & Sahraoui, Melik & Grioui, Najla & Halouani, Kamel, 2014. "2-D Modeling of thermo-kinetics coupled with heat and mass transfer in the reduction zone of a fixed bed downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 66(C), pages 288-298.
    4. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    5. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    7. Mahmoud A. Sharara & Sammy S. Sadaka, 2018. "Opportunities and Barriers to Bioenergy Conversion Techniques and Their Potential Implementation on Swine Manure," Energies, MDPI, vol. 11(4), pages 1-26, April.
    8. Kirch, Thomas & Medwell, Paul R. & Birzer, Cristian H. & van Eyk, Philip J., 2020. "Small-scale autothermal thermochemical conversion of multiple solid biomass feedstock," Renewable Energy, Elsevier, vol. 149(C), pages 1261-1270.
    9. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    10. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    11. Ghorbani, Saba & Atashkari, Kazem & Borji, Mehdi, 2022. "Three-stage model-based evaluation of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 734-745.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    2. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    3. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis," Energy, Elsevier, vol. 35(6), pages 2557-2579.
    4. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    5. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    6. Patel, Vimal R. & Upadhyay, Darshit S. & Patel, Rajesh N., 2014. "Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier," Energy, Elsevier, vol. 78(C), pages 323-332.
    7. Niranjan Rao Deevela & Bhim Singh & Tara C. Kandpal, 2021. "Techno-economics of solar PV array-based hybrid systems for powering telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17003-17029, November.
    8. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    9. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    10. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    11. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    12. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    13. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    14. Babu, C.A. & Ashok, S., 2009. "Optimal utilization of renewable energy-based IPPs for industrial load management," Renewable Energy, Elsevier, vol. 34(11), pages 2455-2460.
    15. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    16. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    17. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    18. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    19. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    20. Sedai, Ashish Kumar & Nepal, Rabindra & Jamasb, Tooraj, 2021. "Flickering lifelines: Electrification and household welfare in India," Energy Economics, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:2:p:379-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.