IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6496-d907748.html
   My bibliography  Save this article

Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner

Author

Listed:
  • Shuhao Zhang

    (Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, UK)

  • Qian Xu

    (China Quality Inspection & Testing Center for Gas Appliances (Foshan), Foshan 528225, China)

  • Shan Su

    (School of Civil Engineering, Chongqing University, Chongqing 400030, China)

  • Shini Peng

    (School of Civil Engineering, Chongqing University, Chongqing 400030, China)

Abstract

The heat transfer between a porous ceramic radiant burner (PCRB) and a target environment was studied. The black aluminum pot (BAP) and white aluminum pot (WAP) with an emissivity of 0.72 and 0.22 were experimentally used to obtain the temperature distribution and thermal efficiency of a burner. Under the same heat load, the porous ceramic plate (PCP) of WAP is 79~90 °C higher than BAP, but the measured thermal efficiency of BAP is 15~20% higher than WAP. A heat transfer model for PCRB and pots was established based on the radiant and convection heat transfer theories. This model is applicable to common infrared radiant burners. The heat gain type of the pot was analyzed quantitively, with a relative error of less than 7%. The influence of the pot surface emissivity on the burner and heat transfer change of the pot was discussed, and the solid radiation heat gain of BAP is approximately double that of BAP under the same heat load. For PCRBs whose main heat is from radiation, the pot with a high surface emissivity can achieve better radiation utilization to improve thermal efficiency.

Suggested Citation

  • Shuhao Zhang & Qian Xu & Shan Su & Shini Peng, 2022. "Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner," Energies, MDPI, vol. 15(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6496-:d:907748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keramiotis, Christos & Stelzner, Björn & Trimis, Dimosthenis & Founti, Maria, 2012. "Porous burners for low emission combustion: An experimental investigation," Energy, Elsevier, vol. 45(1), pages 213-219.
    2. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    3. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruslan V. Fedorov & Dmitry A. Generalov & Vyacheslav V. Sherkunov & Valeriy V. Sapunov & Sergey V. Busygin, 2023. "Improving the Efficiency of Fuel Combustion with the Use of Various Designs of Embrasures," Energies, MDPI, vol. 16(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    2. Maznoy, Anatoly & Kirdyashkin, Alexander & Pichugin, Nikita & Zambalov, Sergey & Petrov, Dmitry, 2020. "Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications," Energy, Elsevier, vol. 204(C).
    3. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    4. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    5. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    6. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    7. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    8. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    9. Shi, Junrui & Liu, Yongqi & Mao, Mingming & Lv, Jinsheng & Wang, Youtang & He, Fang, 2019. "Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor," Energy, Elsevier, vol. 181(C), pages 250-263.
    10. Wang, Shixuan & Li, Linhong & Xia, Yongfang & Fan, Aiwu & Yao, Hong, 2018. "Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile," Energy, Elsevier, vol. 165(PA), pages 522-531.
    11. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.
    12. Robayo, Manuel D. & Beaman, Ben & Hughes, Billy & Delose, Brittany & Orlovskaya, Nina & Chen, Ruey-Hung, 2014. "Perovskite catalysts enhanced combustion on porous media," Energy, Elsevier, vol. 76(C), pages 477-486.
    13. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    14. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    15. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
    16. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    17. Ghorashi, Seyed Amin & Hashemi, Seyed Abdolmehdi & Hashemi, Seyed Mohammad & Mollamahdi, Mahdi, 2018. "Experimental study on pollutant emissions in the novel combined porous-free flame burner," Energy, Elsevier, vol. 162(C), pages 517-525.
    18. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    19. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    20. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6496-:d:907748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.