IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics036054422300542x.html
   My bibliography  Save this article

Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner

Author

Listed:
  • Sharma, Debojit
  • Lee, Bok Jik
  • Dash, Sukanta Kumar
  • Reddy, V. Mahendra

Abstract

In the present study, the experimental and numerical investigations are conducted to study the flame stabilization of premixed LPG/air mixtures in a zirconia-based stack porous media burner with 10 PPI foams at higher thermal inputs of 16.63, 19.95 and 23.28 kW under fuel-rich conditions. A detailed chemical model with 67 species and 475 elementary reactions is developed and implemented to elucidate the chemical aspect in the present work. Flame morphology, effects of PM on flame temperature and its reaction zone, intermediate species, heat release rates, and major emissions like NOx and CO are analysed to design an ultra-high intensity burner for mini-gas turbine applications. At 16.63 kW, the peak of OH radicals increased by 92.58 times on gradually shifting the equivalence ratio, φ from 2.18 to 1.21. Chain branching reaction ((R1) H + O2 ↔ O + OH) accounts for consuming 5–10% of the combustion heat, and its contribution percentage slightly predominant towards stoichiometry due to more O2 availability that accelerates the chain branching reaction. Flame temperature and the residence time are the dominant factors affecting CO and NOx formations. NOx emission levels are found to be significant in both the high thermal input cases of 16.63 and 19.95 kW.

Suggested Citation

  • Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s036054422300542x
    DOI: 10.1016/j.energy.2023.127148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300542X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Hua & Valera-Medina, Agustin & Bowen, Philip J, 2017. "Study on premixed combustion characteristics of co-firing ammonia/methane fuels," Energy, Elsevier, vol. 140(P1), pages 125-135.
    2. Keramiotis, Christos & Stelzner, Björn & Trimis, Dimosthenis & Founti, Maria, 2012. "Porous burners for low emission combustion: An experimental investigation," Energy, Elsevier, vol. 45(1), pages 213-219.
    3. Elbaz, A.M. & Moneib, H.A. & Shebil, K.M. & Roberts, W.L., 2019. "Low NOX - LPG staged combustion double swirl flames," Renewable Energy, Elsevier, vol. 138(C), pages 303-315.
    4. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    5. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
    7. Li, Jun & Huang, Hongyu & Deng, Lisheng & He, Zhaohong & Osaka, Yugo & Kobayashi, Noriyuki, 2019. "Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame," Energy, Elsevier, vol. 175(C), pages 604-617.
    8. Robayo, Manuel D. & Beaman, Ben & Hughes, Billy & Delose, Brittany & Orlovskaya, Nina & Chen, Ruey-Hung, 2014. "Perovskite catalysts enhanced combustion on porous media," Energy, Elsevier, vol. 76(C), pages 477-486.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    2. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    3. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    4. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    5. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    6. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    7. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    8. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    9. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    10. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    11. Wang, Siqi & Chong, Cheng Tung & Xie, Tian & Józsa, Viktor & Ng, Jo-Han, 2023. "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, Elsevier, vol. 281(C).
    12. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    13. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    14. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    15. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Liu, Xing & Wang, Ying & Bai, Yuanqi & Yang, Wenxu, 2023. "Development of reduced and optimized mechanism for ammonia/ hydrogen mixture based on genetic algorithm," Energy, Elsevier, vol. 270(C).
    17. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    18. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    19. Chen, Chen & Liu, Dong, 2023. "Review of effects of zero-carbon fuel ammonia addition on soot formation in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s036054422300542x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.