IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313384.html
   My bibliography  Save this article

Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method

Author

Listed:
  • Vahidhosseini, Seyed Mohammad
  • Esfahani, Javad Abolfazli
  • Kim, Kyung Chun

Abstract

A response surface analysis is performed on a cylindrical porous radiant burner with internal combustion regime, which is recently introduced. A structured grid is used to perform the simulations. First, the equations of continuity, momentum, turbulence, energy, radiation, mixture fraction and progress variable were solved with an appropriate accuracy. An excellent agreement was observed between the numerical results and the available laboratory data. Second, three response surfaces of the output enthalpy, radiant efficiency and radiative heat were investigated using the verified model. The independent variables including input power, porous foam’s emissivity and the equivalence ratio are changed in the ranges of P ∈ [1.5,5] kW, εrad ∈ [0.4,0.9] and φ ∈ [0.5,1.1], respectively. The results show that the radiant efficiency of above 50% can be achieved using this type of porous burner with no preheating. Based on a local sensitivity analysis, the sensitivity of ηrad to εrad and φ at (P,εrad,φ) = (5,0.4,0.8) is equal to 7.50% and 0.511%, according to the coded independent variables, respectively. Moreover, according to an energy saving analysis, for a radiant heat of 900 W, 13.6% of energy could be saved compared to the ideal conditions, in which φ ≈ 1, by choosing the best conditions.

Suggested Citation

  • Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313384
    DOI: 10.1016/j.energy.2020.118231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    2. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    3. Gao, Huai-Bin & Qu, Zhi-Guo & He, Ya-ling & Tao, Wen-Quan, 2012. "Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters," Applied Energy, Elsevier, vol. 100(C), pages 295-302.
    4. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    5. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    6. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuhao Zhang & Qian Xu & Shan Su & Shini Peng, 2022. "Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner," Energies, MDPI, vol. 15(18), pages 1-14, September.
    2. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    2. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    3. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    4. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    5. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    6. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    7. Ahmadi, Ziaulhaq & Zabetian Targhi, Mohammad, 2021. "Thermal performance investigation of a premixed surface flame burner used in the domestic heating boilers," Energy, Elsevier, vol. 236(C).
    8. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    9. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    10. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    11. Kuntikana, Pramod & Prabhu, S.V., 2017. "Thermal investigations on methane-air premixed flame jets of multi-port burners," Energy, Elsevier, vol. 123(C), pages 218-228.
    12. Mohaddes, Danyal & Chang, Clarence T. & Ihme, Matthias, 2020. "Thermodynamic cycle analysis of superadiabatic matrix-stabilized combustion for gas turbine engines," Energy, Elsevier, vol. 207(C).
    13. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    15. Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai, 2019. "Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization," Energy, Elsevier, vol. 175(C), pages 36-45.
    16. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    17. Shuhao Zhang & Qian Xu & Shan Su & Shini Peng, 2022. "Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner," Energies, MDPI, vol. 15(18), pages 1-14, September.
    18. Maznoy, Anatoly & Kirdyashkin, Alexander & Pichugin, Nikita & Zambalov, Sergey & Petrov, Dmitry, 2020. "Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications," Energy, Elsevier, vol. 204(C).
    19. Deymi-Dashtebayaz, Mahdi & Rezapour, Mojtaba & Sheikhani, Hamideh & Afshoun, Hamid Reza & Barzanooni, Vahid, 2023. "Numerical and experimental analyses of a novel natural gas cooking burner with the aim of improving energy efficiency and reducing environmental pollution," Energy, Elsevier, vol. 263(PE).
    20. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.