IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1273-d505802.html
   My bibliography  Save this article

Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O

Author

Listed:
  • Carlo Pastore

    (Water Research Institute (IRSA), National Research Council (CNR), via F. de Blasio 5, 70132 Bari, Italy)

  • Valeria D’Ambrosio

    (Water Research Institute (IRSA), National Research Council (CNR), via F. de Blasio 5, 70132 Bari, Italy)

Abstract

A process for obtaining ethyl levulinate through the direct esterification of levulinic acid and ethanol using AlCl 3 ·6H 2 O as a catalyst was investigated. AlCl 3 ·6H 2 O was very active in promoting the reaction and, the correspondent kinetic and thermodynamic data were determined. The reaction followed a homogeneous second-order reversible reaction model: in the temperature range of 318–348 K, E a was 56.3 kJ·K −1 ·mol −1 , whereas K eq was in the field 2.37–3.31. The activity of AlCl 3 ·6H 2 O was comparable to that of conventional mineral acids. Besides, AlCl 3 ·6H 2 O also induced a separation of phases in which ethyl levulinate resulted mainly (>98 wt%) dissolved into the organic upper layer, well separated by most of the co-formed water, which decanted in the bottom. The catalyst resulted wholly dissolved into the aqueous phase (>95 wt%), allowing at the end of a reaction cycle, complete recovery, and possible reuse for several runs. With the increase of the AlCl 3 ·6H 2 O content (from 1 to 5 mol%), the reaction proceeded fast, and the phases’ separation improved. Such a behavior eventually results in an intensification of processes of reaction and separation of products and catalyst in a single step. The use of AlCl 3 ·6H 2 O leads to a significant reduction of energy consumed for the final achievement of ethyl levulinate, and a simplification of line-processes can be achieved.

Suggested Citation

  • Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1273-:d:505802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zainol, Muzakkir Mohammad & Amin, Nor Aishah Saidina & Asmadi, Mohd, 2019. "Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst," Renewable Energy, Elsevier, vol. 130(C), pages 547-557.
    2. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    3. Mauro Banchero & Giuseppe Gozzelino, 2018. "A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15," Energies, MDPI, vol. 11(7), pages 1-12, July.
    4. di Bitonto, Luigi & Lopez, Antonio & Mascolo, Giuseppe & Mininni, Giuseppe & Pastore, Carlo, 2016. "Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel," Renewable Energy, Elsevier, vol. 90(C), pages 55-61.
    5. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    6. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    7. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yus Donald Chaniago & Le Cao Nhien & Ahmad Naquash & Amjad Riaz & Gwang Sik Kim & Hankwon Lim & Moonyong Lee, 2021. "Pressure Swing-Based Reactive Distillation and Dividing Wall Column for Improving Manufacture of Propylene Glycol Monomethyl Ether Acetate," Energies, MDPI, vol. 14(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
    2. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    3. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    4. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    5. Oprescu, Elena-Emilia & Enascuta, Cristina-Emanuela & Doukeh, Rami & Calin, Catalina & Lavric, Vasile, 2021. "Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates," Renewable Energy, Elsevier, vol. 176(C), pages 651-662.
    6. Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
    7. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    8. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    9. Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
    10. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    11. Pan, Hu & Liu, Xiaofang & Zhang, Heng & Yang, Kaili & Huang, Shan & Yang, Song, 2017. "Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion," Renewable Energy, Elsevier, vol. 107(C), pages 245-252.
    12. Tiong, Yong Wei & Yap, Chiew Lin & Gan, Suyin & Yap, Winnie Soo Ping, 2020. "Kinetic and thermodynamic studies of oil palm mesocarp fiber cellulose conversion to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids," Renewable Energy, Elsevier, vol. 146(C), pages 932-943.
    13. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    14. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    15. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    16. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    17. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    20. Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1273-:d:505802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.