IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p408-d1318852.html
   My bibliography  Save this article

Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals

Author

Listed:
  • Varsha K. Singh

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Sapana Jha

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Palak Rana

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Renu Soni

    (Department of Botany, Gargi College, University of Delhi, Delhi 110049, India)

  • Rowland Lalnunpuii

    (Department of Biotechnology, Mizoram University, Aizawl 796001, India)

  • Prashant K. Singh

    (Department of Biotechnology, Mizoram University, Aizawl 796001, India)

  • Rajeshwar P. Sinha

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Garvita Singh

    (Department of Botany, Gargi College, University of Delhi, Delhi 110049, India)

Abstract

The combustion of fossil fuels constitutes a significant catalyst for climate change, resulting in the annual release of about two billion tonnes of carbon dioxide (CO 2 ). The increase in CO 2 emission is directly linked to a heightened occurrence of natural calamities and health-related issues. The substitution of fossil fuels with renewable energy sources is a fundamental approach to reduce the negative impacts caused by consumption of these nonrenewable energy resources. The utilisation of biological methodologies to produce environmentally friendly energy from renewable sources holds significant potential for the sustainable production of fuel. However, the cultivation of first- and second-generation biofuel crops presents a challenge, since they compete for limited cropland, hence constraining their overall viability. In contrast, photosynthetic microorganisms such as algae and cyanobacteria exhibit significant potential as third-generation biofuel catalysts, devoid of the limitations associated with contemporary biofuels. Cyanobacteria, a type of photosynthetic prokaryotes, exhibit significant potential for the direct conversion of carbon dioxide (CO 2 ) into biofuels, chemicals, and various other valuable compounds. There has been a growing interest in the concept of utilising biological processes to convert carbon dioxide into fuels and chemicals. The introduction of a limited number of heterologous genes has the potential to confer upon cyanobacteria the capability to convert particular central metabolites into a diverse range of end products. The progress in the field of synthetic biology and genetic manipulation has enabled the manipulation of cyanobacteria to synthesise compounds that are not generally produced by these organisms in their natural environment. This study focuses on recent papers that employ various methodologies to engineer cyanobacteria for the purpose of producing high-value compounds, such as biofuels.

Suggested Citation

  • Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:408-:d:1318852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Velmurugan, Rajendran & Incharoensakdi, Aran, 2020. "Co-cultivation of two engineered strains of Synechocystis sp. PCC 6803 results in improved bioethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1124-1133.
    2. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    3. Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    3. Mkedder, Nadjim & Jain, Varsha & Salunke, Parth, 2024. "Determinants of virtual reality stores influencing purchase intention: An interpretive structural modeling approach," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    4. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    5. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    6. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    7. Avinash, A. & Sasikumar, P. & Pugazhendhi, Arivalagan, 2020. "Analysis of the limiting factors for large scale microalgal cultivation: A promising future for renewable and sustainable biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Chuanmin Mi & Yetian Chen & Chiung-Shu Cheng & Joselyne Lucky Uwanyirigira & Ching-Torng Lin, 2019. "Exploring the Determinants of Hot Spring Tourism Customer Satisfaction: Causal Relationships Analysis Using ISM," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    9. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    10. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    11. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    12. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    13. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Bartosz Gawron & Tomasz Białecki & Anna Janicka & Tomasz Suchocki, 2020. "Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks," Energies, MDPI, vol. 13(5), pages 1-12, March.
    15. Sainger, Manish & Jaiwal, Anjali & Sainger, Poonam Ahlawat & Chaudhary, Darshna & Jaiwal, Ranjana & Jaiwal, Pawan K., 2017. "Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 623-637.
    16. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    17. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
    18. Luo, Tengqi & Xuan, Ang & Wang, Yafei & Li, Guanglei & Fang, Juan & Liu, Zhengguang, 2023. "Energy efficiency evaluation and optimization of active distribution networks with building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 219(P1).
    19. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:408-:d:1318852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.