Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.04.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
- Patel, Bhavish & Arcelus-Arrillaga, Pedro & Izadpanah, Arash & Hellgardt, Klaus, 2017. "Catalytic Hydrotreatment of algal biocrude from fast Hydrothermal Liquefaction," Renewable Energy, Elsevier, vol. 101(C), pages 1094-1101.
- Pedersen, T.H. & Jensen, C.U. & Sandström, L. & Rosendahl, L.A., 2017. "Full characterization of compounds obtained from fractional distillation and upgrading of a HTL biocrude," Applied Energy, Elsevier, vol. 202(C), pages 408-419.
- Muhammad Salman Haider & Daniele Castello & Karol Michal Michalski & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts," Energies, MDPI, vol. 11(12), pages 1-14, December.
- Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
- Konstantinos Anastasakis & Patrick Biller & René B. Madsen & Marianne Glasius & Ib Johannsen, 2018. "Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation," Energies, MDPI, vol. 11(10), pages 1-23, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
- Xu, Donghua & Lin, Junhao & Ma, Rui & Fang, Lin & Sun, Shichang & Luo, Juan, 2022. "Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation," Renewable Energy, Elsevier, vol. 184(C), pages 124-133.
- Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
- Huang, Xinghua & Dong, Shengfei & Yang, Xiaoyi, 2022. "Refining lipid for aviation biofuel at the molecular level," Renewable Energy, Elsevier, vol. 201(P1), pages 148-159.
- Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Hosseini, Mohammad & Hatefirad, Parvaneh & Salimi, Saeideh & Tavasoli, Ahmad, 2022. "Hydrothermal liquefaction of granular bacteria to high-quality bio-oil using Ni–Ce catalysts supported on functionalized activated carbon," Energy, Elsevier, vol. 241(C).
- Aljabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mahmoud & Hawari, Alaa H. & Al-Shamary, Noora Mahmoud, 2022. "A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process," Renewable Energy, Elsevier, vol. 189(C), pages 78-89.
- Robertson, Gilles & Adiningtyas, Kusuma Virginna & Ebrahim, Sayed Ahmed & Scoles, Ludmila & Baranova, Elena A. & Singh, Devinder, 2021. "Understanding the nature of bio-asphaltenes produced during hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 173(C), pages 128-140.
- Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
- Pelosin, Primavera & Longhin, Francesco & Hansen, Nikolaj Bisgaard & Lamagni, Paolo & Drazevic, Emil & Benito, Patricia & Anastasakis, Konstantinos & Catalano, Jacopo, 2024. "High-temperature high-pressure electrochemical hydrogenation of biocrude oil," Renewable Energy, Elsevier, vol. 222(C).
- Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
- Ekaterina Ovsyannikova & Andrea Kruse & Gero C. Becker, 2020. "Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
- Prestigiacomo, Claudia & Proietto, Federica & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2021. "Catalytic hydrothermal liquefaction of municipal sludge assisted by formic acid for the production of next-generation fuels," Energy, Elsevier, vol. 232(C).
- Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
- Do, Truong Xuan & Mujahid, Rana & Lim, Hyun Soo & Kim, Jae-Kon & Lim, Young-Il & Kim, Jaehoon, 2020. "Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water," Renewable Energy, Elsevier, vol. 151(C), pages 30-42.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Ekaterina Ovsyannikova & Andrea Kruse & Gero C. Becker, 2020. "Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
- Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
- Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
- Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
- Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
- SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Prestigiacomo, Claudia & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2020. "Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge," Energy, Elsevier, vol. 201(C).
- Muhammad Salman Haider & Daniele Castello & Karol Michal Michalski & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts," Energies, MDPI, vol. 11(12), pages 1-14, December.
- Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Lozano, E.M. & Pedersen, T.H. & Rosendahl, L.A., 2020. "Integration of hydrothermal liquefaction and carbon capture and storage for the production of advanced liquid biofuels with negative CO2 emissions," Applied Energy, Elsevier, vol. 279(C).
- Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
- Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
- Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
- Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
- Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
- Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
More about this item
Keywords
Hydrothermal liquefaction; Catalytic hydrotreating; Nitrogen-containing compounds; Drop-in fuels;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:420-430. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.