IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3360-d186902.html
   My bibliography  Save this article

Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts

Author

Listed:
  • Muhammad Salman Haider

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

  • Daniele Castello

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

  • Karol Michal Michalski

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

  • Thomas Helmer Pedersen

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

  • Lasse Aistrup Rosendahl

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark)

Abstract

To obtain drop-in fuel properties from 3rd generation biomass, we herein report the catalytic hydrotreatment of microalgae biocrude, produced from hydrothermal liquefaction (HTL) of Spirulina . Our contribution focuses on the effect of temperature, initial H 2 pressure, and residence time on the removal of heteroatoms (O and N) in a batch hydrotreating setup. In contrast to common experimental protocols for hydrotreating at batch scale, we devised a set of two-level factorial experiments and studied the most influential parameters affecting the removal of heteroatoms. It was found that up to 350 °C, the degree of deoxygenation (de-O) is mainly driven by temperature, whereas the degree of denitrogenation (de-N) also relies on initial H 2 pressure and temperature-pressure interaction. Based on this, complete deoxygenation was obtained at mild operating conditions (350 °C), reaching a concurrent 47% denitrogenation. Moreover, three optimized experiments are reported with 100% removal of oxygen. In addition, the analysis by GC-MS and Sim-Dis gives insight to the fuel quality. The distribution of heteroatom N in lower (<340 °C) and higher (>340 °C) fractional cuts is studied by a fractional distillation unit following ASTM D-1160. Final results show that 63–68% of nitrogen is concentrated in higher fractional cuts.

Suggested Citation

  • Muhammad Salman Haider & Daniele Castello & Karol Michal Michalski & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts," Energies, MDPI, vol. 11(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3360-:d:186902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedersen, T.H. & Jensen, C.U. & Sandström, L. & Rosendahl, L.A., 2017. "Full characterization of compounds obtained from fractional distillation and upgrading of a HTL biocrude," Applied Energy, Elsevier, vol. 202(C), pages 408-419.
    2. Edward Frank & Amgad Elgowainy & Jeongwoo Han & Zhichao Wang, 2013. "Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 137-158, January.
    3. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    4. Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
    5. Konstantinos Anastasakis & Patrick Biller & René B. Madsen & Marianne Glasius & Ib Johannsen, 2018. "Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation," Energies, MDPI, vol. 11(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Castello, Daniele & Haider, Muhammad Salman & Rosendahl, Lasse Aistrup, 2019. "Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks," Renewable Energy, Elsevier, vol. 141(C), pages 420-430.
    3. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Ekaterina Ovsyannikova & Andrea Kruse & Gero C. Becker, 2020. "Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production," Energies, MDPI, vol. 13(2), pages 1-21, January.
    5. Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
    6. Liu, Xu & Guo, Yang & Dasgupta, Anish & He, Haoran & Xu, Donghai & Guan, Qingqing, 2022. "Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process," Renewable Energy, Elsevier, vol. 183(C), pages 627-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    4. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    5. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    6. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    7. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    8. Farhad M. Hossain & Jana Kosinkova & Richard J. Brown & Zoran Ristovski & Ben Hankamer & Evan Stephens & Thomas J. Rainey, 2017. "Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor," Energies, MDPI, vol. 10(4), pages 1-16, April.
    9. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
    11. Edoardo Miliotti & Stefano Dell’Orco & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2019. "Lignocellulosic Ethanol Biorefinery: Valorization of Lignin-Rich Stream through Hydrothermal Liquefaction," Energies, MDPI, vol. 12(4), pages 1-27, February.
    12. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    13. Castello, Daniele & Haider, Muhammad Salman & Rosendahl, Lasse Aistrup, 2019. "Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks," Renewable Energy, Elsevier, vol. 141(C), pages 420-430.
    14. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    15. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    16. Prestigiacomo, Claudia & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2020. "Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge," Energy, Elsevier, vol. 201(C).
    17. Skaggs, Richard L. & Coleman, André M. & Seiple, Timothy E. & Milbrandt, Anelia R., 2018. "Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2640-2651.
    18. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Makoto M. Watanabe & Andreas Isdepsky, 2021. "Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae," Energies, MDPI, vol. 14(21), pages 1-29, October.
    20. Jukka Lappalainen & David Baudouin & Ursel Hornung & Julia Schuler & Kristian Melin & Saša Bjelić & Frédéric Vogel & Jukka Konttinen & Tero Joronen, 2020. "Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin," Energies, MDPI, vol. 13(13), pages 1-45, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3360-:d:186902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.