IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp198-211.html
   My bibliography  Save this article

Identifying overcast, partly cloudy and clear skies by illuminance fluctuations

Author

Listed:
  • Lou, Siwei
  • Li, Danny.H.W.
  • Chen, Wenqiang

Abstract

The overcast, partly cloudy and clear sky conditions can determine the diffuse sky radiance and luminance distributions over the sky dome, and thus are crucial for evaluating the solar energy and daylight on and through building envelopes. It is preferable to properly identify the sky condition and determining its diffuse radiance and luminance distribution patterns by the readily available data. In this work, we propose a new approach to identifying the sky conditions, especially the cloudy and clear skies mainly by the horizontal illuminance fluctuation frequency. Illuminance on ground level may fluctuate at high frequency under cloudy skies due to the broken cloud, while vary smoothly under clear skies with few cloud blockages. For input data, the proposed approach needs the horizontal global illuminance that can be readily accessible for many places instead of the “uncommon” measurements on vertical planes or in sky zenith. The fluctuation frequency factor we propose can reduce the misclassification rate for daily and half-day representative sky conditions by 5.7% and 11.5%, respectively, compared to the classifications using the clearness index only.

Suggested Citation

  • Lou, Siwei & Li, Danny.H.W. & Chen, Wenqiang, 2019. "Identifying overcast, partly cloudy and clear skies by illuminance fluctuations," Renewable Energy, Elsevier, vol. 138(C), pages 198-211.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:198-211
    DOI: 10.1016/j.renene.2019.01.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    2. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    3. Orehounig, Kristina & Dervishi, Sokol & Mahdavi, Ardeshir, 2014. "Computational derivation of irradiance on building surfaces: An empirically-based model comparison," Renewable Energy, Elsevier, vol. 71(C), pages 185-192.
    4. Larrañeta, M. & Reno, M.J. & Lillo-Bravo, I. & Silva-Pérez, M.A., 2017. "Identifying periods of clear sky direct normal irradiance," Renewable Energy, Elsevier, vol. 113(C), pages 756-763.
    5. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    6. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    7. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    2. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.
    3. Lillo-Bravo, I. & Larrañeta, M. & Núñez-Ortega, E. & González-Galván, R., 2020. "Simplified model to correct thermopile pyranometer solar radiation measurements for photovoltaic module yield estimation," Renewable Energy, Elsevier, vol. 146(C), pages 1486-1497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    2. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    3. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    4. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Liu, Hongda & Li, Lun & Han, Yang & Lu, Fang, 2019. "Method of identifying the lengths of equivalent clear-sky periods in the time series of DNI measurements based on generalized atmospheric turbidity," Renewable Energy, Elsevier, vol. 136(C), pages 179-192.
    6. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    7. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    8. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    9. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.
    10. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    11. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    12. Wenqi Zhang & William Kleiber & Bri‐Mathias Hodge & Barry Mather, 2022. "A nonstationary and non‐Gaussian moving average model for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    13. Agustín Torres Rodríguez & David Morillón Gálvez & Iván García Kerdan & Rodolfo Silva Casarín, 2023. "A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM," Energies, MDPI, vol. 16(9), pages 1-28, April.
    14. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    15. Dorian Esteban Guzman Razo & Björn Müller & Henrik Madsen & Christof Wittwer, 2020. "A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning," Energies, MDPI, vol. 13(24), pages 1-20, December.
    16. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    17. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    18. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    19. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    20. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:198-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.