IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3630-d1130819.html
   My bibliography  Save this article

A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM

Author

Listed:
  • Agustín Torres Rodríguez

    (Posgrado de Arquitectura, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico)

  • David Morillón Gálvez

    (Instituto de Ingeniería, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico)

  • Iván García Kerdan

    (Tecnologico de Monterrey, School of Engineering and Sciences, Mexico City 01389, Mexico)

  • Rodolfo Silva Casarín

    (Instituto de Ingeniería, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico)

Abstract

In this research sustainable refrigerants are tested as filler gases in Transparent Thermal Insulation (TTI) for the first time. These are compared with pig fat, a readily available material with good thermal inertia that is proposed as an organic phase change material (PCM). The aim of this paper is to compare the thermal behaviour of a Hybrid Air Conditioning System (HACS) with TTI filled with R134a, R1233zd and a pig-fat-based PCM. Numerical simulations using the OPAQUE 3 program and two online platforms are used to evaluate the possible application of TTI and PCM as passive systems. Additionally, three TTI models are used to simulate the heat transfer processes of TTI, PCM and R134a. The velocity of the flow in the air gap is also analysed numerically in both laminar and turbulent states. For the assessment, infrared thermographic imagery is used to measure the temperatures in the HACS, giving values of 46.17 °C by day and 38.05 °C at night. The results show that the heat loss and heat gain in the combination TTI filled with refrigerants and pig-fat-based PCM are between 2.22 and 1.51 W/m 2 . In addition, the HACS was able to keep a small box warm during the night. The flow in the air gap of the HACS can be controlled by installing Ni-Ti wire actuators with a cooling temperature of 23 °C and a heating temperature of 70 °C. The Ni-Ti wire actuators can open and close the dampers at 23 °C and 51 °C, respectively. By installing a 5-watt solar-power fan, the velocity of the flow in the air gap in the HACS can be increased, thus improving the efficiency of the system. In all the experiments, the pig fat proved to be suitable for use in building applications as a non-flammable organic material.

Suggested Citation

  • Agustín Torres Rodríguez & David Morillón Gálvez & Iván García Kerdan & Rodolfo Silva Casarín, 2023. "A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM," Energies, MDPI, vol. 16(9), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3630-:d:1130819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk, 2018. "Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime," Applied Energy, Elsevier, vol. 217(C), pages 390-408.
    2. Le Neindre, B. & Garrabos, Y. & Tufeu, R., 1989. "Thermal conductivity of dense noble gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 156(1), pages 512-521.
    3. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    4. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengjing Li & Yishun Sha & Xuelai Zhang, 2024. "Research on Phase Change Cold Storage Materials and Innovative Applications in Air Conditioning Systems," Energies, MDPI, vol. 17(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    2. Yao Lu & Faisal Khaled Aldawood & Wanyu Hu & Yuxin Ma & Mohamed Kchaou & Chengjun Zhang & Xinpeng Yang & Ruitong Yang & Zitong Qi & Dong Li, 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    3. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    4. Luca Evangelisti & Leone Barbaro & Claudia Guattari & Edoardo De Cristo & Roberto De Lieto Vollaro & Francesco Asdrubali, 2024. "Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests," Energies, MDPI, vol. 17(12), pages 1-16, June.
    5. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    6. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    7. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    8. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    10. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Agnieszka Żelazna & Lech Lichołai & Joanna Krasoń & Przemysław Miąsik & Dominika Mikušová, 2023. "The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle," Energies, MDPI, vol. 16(23), pages 1-19, November.
    12. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    13. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    14. Nebelenchuk, V.F. & Mazur, V.A., 1991. "Transport properties of dense fluids via spherical models of the interaction potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(1), pages 123-148.
    15. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
    16. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    17. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    18. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    19. David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    20. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3630-:d:1130819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.