IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3203-d374079.html
   My bibliography  Save this article

Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope

Author

Listed:
  • Belen Moreno Santamaria

    (Department of Construction and Architectural Technology, Technical School of Architecture of Madrid, Technical University of Madrid (UPM), Av. Juan de Herrera, 4, 28040 Madrid, Spain)

  • Fernando del Ama Gonzalo

    (Keene State College, 229 Main St, Keene, NH 03435, USA)

  • Danielle Pinette

    (Keene State College, 229 Main St, Keene, NH 03435, USA)

  • Roberto-Alonso Gonzalez-Lezcano

    (Escuela Politécnica Superior, Universidad San Pablo-CEU, Montepríncipe Campus, Boadilla del Monte, 28668 Madrid, Spain)

  • Benito Lauret Aguirregabiria

    (Department of Construction and Architectural Technology, Technical School of Architecture of Madrid, Technical University of Madrid (UPM), Av. Juan de Herrera, 4, 28040 Madrid, Spain)

  • Juan A. Hernandez Ramos

    (Department of Applied Mathematics, School of Aeronautical and Space Engineering, Technical University of Madrid (UPM), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain)

Abstract

The transparent materials used in building envelopes significantly contribute to heating and cooling loads of a building. The use of transparent materials requires to solve issues regarding heat gain, heat loss, and daylight. Water flow glazing (WFG), a disruptive technology, includes glazing as part of the Heating, Ventilation and Air Conditioning (HVAC) system. Water is transparent to visible wavelengths, but it captures most of the infrared solar radiation. As an alternative to fossil fuel-based HVAC systems, the absorbed energy can be transferred to the ground through borehole heat exchangers and dissipated as a means of free-cooling. Researchers of the Polytechnic University of Madrid have developed a software tool to calculate the energy balance while incorporating the dynamic properties of WFG. This article has studied the mathematical model of that tool and validated its ability to predict energy savings in buildings, taking spectral and thermal parameters of glazing catalogs, commercial software, and inputs from the measurements of the prototypes. The results found in this article showed that it is possible to predict the thermal behavior of WFG and the energy savings by comparing the thermal parameters of two prototypes. The energy absorbed by the water depends on the mass flow rate and the inlet and outlet temperatures.

Suggested Citation

  • Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3203-:d:374079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.
    2. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    3. Meggers, Forrest & Ritter, Volker & Goffin, Philippe & Baetschmann, Marc & Leibundgut, Hansjürg, 2012. "Low exergy building systems implementation," Energy, Elsevier, vol. 41(1), pages 48-55.
    4. Luca Evangelisti & Gabriele Battista & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Influence of the Thermal Inertia in the European Simplified Procedures for the Assessment of Buildings’ Energy Performance," Sustainability, MDPI, vol. 6(7), pages 1-11, July.
    5. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    6. Jesús Feijó-Muñoz & Irene Poza-Casado & Roberto Alonso González-Lezcano & Cristina Pardal & Víctor Echarri & Rafael Assiego De Larriva & Jesica Fernández-Agüera & María Jesús Dios-Viéitez & Víctor Jos, 2018. "Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study," Energies, MDPI, vol. 11(4), pages 1-20, March.
    7. Antonella Priarone & Federico Silenzi & Marco Fossa, 2020. "Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    8. Søren Erbs Poulsen & Maria Alberdi-Pagola & Davide Cerra & Anna Magrini, 2019. "An Experimental and Numerical Case Study of Passive Building Cooling with Foundation Pile Heat Exchangers in Denmark," Energies, MDPI, vol. 12(14), pages 1-18, July.
    9. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2015. "Measured overall heat transfer coefficient of a suspended particle device switchable glazing," Applied Energy, Elsevier, vol. 159(C), pages 362-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando del Ama Gonzalo & Belén Moreno Santamaría & Juan A. Hernández Ramos, 2022. "Assessment of Water Flow Glazing as Building-Integrated Solar Thermal Collector," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    2. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Lin He & Shunan Zhao & Guowen Xu & Xin Wu & Junlong Xie & Shanshan Cai, 2021. "Prediction and Evaluation of Dynamic Variations of the Thermal Environment in an Air-Conditioned Room Using Collaborative Simulation Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    4. Fernando del Ama Gonzalo & Belen Moreno Santamaria & José Antonio Ferrándiz Gea & Matthew Griffin & Juan A. Hernandez Ramos, 2021. "Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing," Energies, MDPI, vol. 14(11), pages 1-20, June.
    5. Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Ewa Zender–Świercz, 2021. "Assessment of Indoor Air Parameters in Building Equipped with Decentralised Façade Ventilation Device," Energies, MDPI, vol. 14(4), pages 1-16, February.
    8. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    9. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space," Sustainability, MDPI, vol. 12(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    2. Ghosh, A. & Mallick, T.K., 2018. "Evaluation of colour properties due to switching behaviour of a PDLC glazing for adaptive building integration," Renewable Energy, Elsevier, vol. 120(C), pages 126-133.
    3. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    4. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    5. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    7. Ghosh, Aritra & Norton, Brian, 2019. "Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply," Renewable Energy, Elsevier, vol. 131(C), pages 993-1001.
    8. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2019. "Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application," Renewable Energy, Elsevier, vol. 131(C), pages 730-736.
    9. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    10. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
    11. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    13. Zhao, Xinpeng & Mofid, Sohrab Alex & Jelle, Bjørn Petter & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2020. "Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits," Applied Energy, Elsevier, vol. 278(C).
    14. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    15. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    16. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    17. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    18. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    19. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    20. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3203-:d:374079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.