IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v81y2005i2p170-186.html
   My bibliography  Save this article

Study of models for predicting the diffuse irradiance on inclined surfaces

Author

Listed:
  • Li, Danny H.W.
  • Cheung, Gary H.W.

Abstract

Solar irradiance data on various inclined surfaces at different orientations are important information for active solar-system analyses and passive energy-efficient building designs. In many parts of the world, however, the basic solar irradiance data for the surfaces of interest are not always readily available. Traditionally, different mathematical models have been developed to predict the solar irradiance on various inclined surfaces using "horizontal" data. Alternatively, the diffuse irradiance of a sloping plane can be calculated by integrating the radiance distribution generated with a sky radiance model. This paper presents the evaluation of two slope irradiance models, namely, the Perez point-source model (PEREZSIM) and the Muneer model (MUNEERSIM), and two sky-distribution models, namely, the Perez all-weather model (PEREZSDM) and the Kittler standard-sky model (KITTLERSDM). Three-year (1999-2001) measured average hourly sky radiance and horizontal sky diffuse irradiance data were used for the model assessment. Statistical results showed that all four models can accurately predict the solar irradiance of a 22.3° (latitude angle of Hong Kong) inclined south-oriented surface, indicating the good predictive ability for modelling an inclined surface with a small tilted angle. In general, the KITTLERSDM and PEREZSIM show the best predictions for vertical solar irradiance at this location, followed by the PEREZSDM, then the MUNEERSIM.

Suggested Citation

  • Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
  • Handle: RePEc:eee:appene:v:81:y:2005:i:2:p:170-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00099-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Ismaily, Hilal A. & Probert, Douglas, 1998. "Photovoltaic electricity prospects in oman," Applied Energy, Elsevier, vol. 59(2-3), pages 97-124, February.
    2. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    3. Vartiainen, Eero, 2000. "A new approach to estimating the diffuse irradiance on inclined surfaces," Renewable Energy, Elsevier, vol. 20(1), pages 45-64.
    4. Kazmerski, Lawrence L., 1997. "Photovoltaics: A review of cell and module technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(1-2), pages 71-170, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    2. Mohajeri, N. & Gudmundsson, A. & Kunckler, T. & Upadhyay, G. & Assouline, D. & Kämpf, J.H & Scartezzini, J.L., 2019. "A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland," Applied Energy, Elsevier, vol. 240(C), pages 173-190.
    3. Torres, J.L. & García, A. & de Blas, M. & Gracia, A. & Illanes, R., 2010. "A study of zenith radiance in Pamplona under different sky conditions," Renewable Energy, Elsevier, vol. 35(4), pages 830-838.
    4. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    5. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    6. Lou, Siwei & Li, Danny.H.W. & Chen, Wenqiang, 2019. "Identifying overcast, partly cloudy and clear skies by illuminance fluctuations," Renewable Energy, Elsevier, vol. 138(C), pages 198-211.
    7. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).
    8. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    9. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    10. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    11. Serena Summa & Giada Remia & Ambra Sebastianelli & Gianluca Coccia & Costanzo Di Perna, 2022. "Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Citi," Energies, MDPI, vol. 15(23), pages 1-18, November.
    12. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    14. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    15. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    16. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
    17. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    18. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    2. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    3. Malik, A.Q. & Damit, Salmi Jan Bin Haji, 2003. "Outdoor testing of single crystal silicon solar cells," Renewable Energy, Elsevier, vol. 28(9), pages 1433-1445.
    4. Lee, Kwanho & Yoo, Hochun & Levermore, Geoff J., 2013. "Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea," Renewable Energy, Elsevier, vol. 57(C), pages 190-199.
    5. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    6. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    7. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    8. Staffan Jacobsson & Björn A. Andersson & Lennart Bångens, 2002. "Transforming the energy system - the evolution of the German technological system for solar cells," SPRU Working Paper Series 84, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    10. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    11. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    12. Juha Koskela & Antti Mutanen & Pertti Järventausta, 2020. "Using Load Forecasting to Control Domestic Battery Energy Storage Systems," Energies, MDPI, vol. 13(15), pages 1-20, August.
    13. Li, Danny H.W. & Lau, Chris C.S. & Lam, Joseph C., 2005. "Predicting daylight illuminance on inclined surfaces using sky luminance data," Energy, Elsevier, vol. 30(9), pages 1649-1665.
    14. Lubitz, William David, 2011. "Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1710-1719, May.
    15. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    16. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    17. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    18. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    19. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    20. Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:81:y:2005:i:2:p:170-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.