IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v109y2019icp412-427.html
   My bibliography  Save this article

A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers

Author

Listed:
  • Gueymard, Christian A.
  • Bright, Jamie M.
  • Lingfors, David
  • Habte, Aron
  • Sengupta, Manajit

Abstract

This study examines all known methods that have been proposed in the literature to identify clear-sky periods in historical solar irradiance time series. Two different types of clear-sky detection (CSD) methods are discussed: those (16 total) that attempt to isolate periods of 1-min or more cloudless conditions, and those (5 total) that only attempt to detect clear-sun periods. All methods are found to rely on a diversity of inputs and on a variety of tests that typically examine the smoothness of the temporal variation of global and/or direct irradiance. Using samples of a few days with variable cloudiness, it is shown that these methods all have obvious strengths and weaknesses. Although this justifies a detailed validation to determine which method(s) could be best suited in the practice of solar radiation modeling or other applications, the current lack of appropriate equipment at high-quality reference radiometric stations prevents such an endeavor. Only a preliminary study is conducted here at seven stations of the SURFRAD network in the U.S., where 1-min irradiance measurements are available, along with sky data from a Total Sky Imager (TSI). The many limitations of the latter prevent its data to be considered “ground truth” here. Nevertheless, the comparison of the results from all CSD methods and 1.2 million TSI observations from all SURFRAD sites provides important qualitative and quantitative information, using a variety of performance indicators. Overall, two CSD methods appear more robust and are recommended, pending better high-resolution and high-performance cloud observations from modern sky cameras to redo these tests.

Suggested Citation

  • Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
  • Handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:412-427
    DOI: 10.1016/j.rser.2019.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
    2. Djafer, D. & Irbah, A. & Zaiani, M., 2017. "Identification of clear days from solar irradiance observations using a new method based on the wavelet transform," Renewable Energy, Elsevier, vol. 101(C), pages 347-355.
    3. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    4. Polo, J. & Antonanzas-Torres, F. & Vindel, J.M. & Ramirez, L., 2014. "Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models," Renewable Energy, Elsevier, vol. 68(C), pages 785-792.
    5. Polo, J. & Martín, L. & Vindel, J.M., 2015. "Correcting satellite derived DNI with systematic and seasonal deviations: Application to India," Renewable Energy, Elsevier, vol. 80(C), pages 238-243.
    6. Gueymard, Christian A. & Ruiz-Arias, José Antonio, 2015. "Validation of direct normal irradiance predictions under arid conditions: A review of radiative models and their turbidity-dependent performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 379-396.
    7. Yang, Dazhi, 2018. "A correct validation of the National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 152-155.
    8. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    9. Larrañeta, M. & Reno, M.J. & Lillo-Bravo, I. & Silva-Pérez, M.A., 2017. "Identifying periods of clear sky direct normal irradiance," Renewable Energy, Elsevier, vol. 113(C), pages 756-763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Arias, José A., 2021. "Aerosol transmittance for clear-sky solar irradiance models: Review and validation of an accurate universal parameterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Wenqi Zhang & William Kleiber & Bri‐Mathias Hodge & Barry Mather, 2022. "A nonstationary and non‐Gaussian moving average model for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    3. Ruiz-Arias, José A., 2023. "SPARTA: Solar parameterization for the radiative transfer of the cloudless atmosphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Edgar F.M. Abreu & Paulo Canhoto & Maria João Costa, 2023. "Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies," Energies, MDPI, vol. 16(24), pages 1-15, December.
    5. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    6. Jordan, Dirk C. & Hansen, Clifford, 2023. "Clear-sky detection for PV degradation analysis using multiple regression," Renewable Energy, Elsevier, vol. 209(C), pages 393-400.
    7. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    8. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.
    9. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    2. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    3. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    4. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    7. Ruiz-Arias, José A., 2023. "SPARTA: Solar parameterization for the radiative transfer of the cloudless atmosphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    10. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    11. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    12. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2022. "Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Salazar, Germán & Gueymard, Christian & Galdino, Janis Bezerra & de Castro Vilela, Olga & Fraidenraich, Naum, 2020. "Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Lou, Siwei & Li, Danny.H.W. & Chen, Wenqiang, 2019. "Identifying overcast, partly cloudy and clear skies by illuminance fluctuations," Renewable Energy, Elsevier, vol. 138(C), pages 198-211.
    15. Polo, J. & Téllez, F.M. & Tapia, C., 2016. "Comparative analysis of long-term solar resource and CSP production for bankability," Renewable Energy, Elsevier, vol. 90(C), pages 38-45.
    16. Liu, Hongda & Li, Lun & Han, Yang & Lu, Fang, 2019. "Method of identifying the lengths of equivalent clear-sky periods in the time series of DNI measurements based on generalized atmospheric turbidity," Renewable Energy, Elsevier, vol. 136(C), pages 179-192.
    17. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    18. Wenqi Zhang & William Kleiber & Bri‐Mathias Hodge & Barry Mather, 2022. "A nonstationary and non‐Gaussian moving average model for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    19. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    20. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:412-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.