IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6191-d897923.html
   My bibliography  Save this article

Solar Irradiance Ramp Forecasting Based on All-Sky Imagers

Author

Listed:
  • Stavros-Andreas Logothetis

    (Laboratory of Atmospheric Physics, Physics Department, University of Patras, 26500 Patras, Greece)

  • Vasileios Salamalikis

    (Laboratory of Atmospheric Physics, Physics Department, University of Patras, 26500 Patras, Greece)

  • Bijan Nouri

    (German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73, 04001 Almería, Spain)

  • Jan Remund

    (Meteotest, 3012 Bern, Switzerland)

  • Luis F. Zarzalejo

    (CIEMAT Energy Department–Renewable Energy Division, Av. Complutense 40, 28040 Madrid, Spain)

  • Yu Xie

    (National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA)

  • Stefan Wilbert

    (German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73, 04001 Almería, Spain)

  • Evangelos Ntavelis

    (CSEM Center Alpnach, 6055 Alpnach Dorf, Switzerland)

  • Julien Nou

    (PROMES-CNRS, Rambla de la Thermodynamique, 66100 Perpignan, France)

  • Niels Hendrikx

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands)

  • Lennard Visser

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands)

  • Manajit Sengupta

    (National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA)

  • Mário Pó

    (EKO INSTRUMENTS Europe B.V., 2521 AL Den Haag, The Netherlands)

  • Remi Chauvin

    (PROMECA Ingénierie, 1 rue des Iles, 38420 Domène, France)

  • Stephane Grieu

    (PROMES Laboratory of Processes, Materials and Solar Energy, Rambla de la Thermodynamique, Université de Perpignan, 66100 Perpignan, France)

  • Niklas Blum

    (German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73, 04001 Almería, Spain)

  • Wilfried van Sark

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands)

  • Andreas Kazantzidis

    (Laboratory of Atmospheric Physics, Physics Department, University of Patras, 26500 Patras, Greece)

Abstract

Solar forecasting constitutes a critical tool for operating, producing and storing generated power from solar farms. In the framework of the International Energy Agency’s Photovoltaic Power Systems Program Task 16, the solar irradiance nowcast algorithms, based on five all-sky imagers (ASIs), are used to investigate the feasibility of ASIs to foresee ramp events. ASIs 1–2 and ASIs 3–5 can capture the true ramp events by 26.0–51.0% and 49.0–92.0% of the cases, respectively. ASIs 1–2 provided the lowest (<10.0%) falsely documented ramp events while ASIs 3–5 recorded false ramp events up to 85.0%. On the other hand, ASIs 3–5 revealed the lowest falsely documented no ramp events (8.0–51.0%). ASIs 1–2 are developed to provide spatial solar irradiance forecasts and have been delimited only to a small area for the purposes of this benchmark, which penalizes these approaches. These findings show that ASI-based nowcasts could be considered as a valuable tool for predicting solar irradiance ramp events for a variety of solar energy technologies. The combination of physical and deep learning-based methods is identified as a potential approach to further improve the ramp event forecasts.

Suggested Citation

  • Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6191-:d:897923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abuella, Mohamed & Chowdhury, Badrul, 2019. "Forecasting of solar power ramp events: A post-processing approach," Renewable Energy, Elsevier, vol. 133(C), pages 1380-1392.
    2. Reno, Matthew J. & Hansen, Clifford W., 2016. "Identification of periods of clear sky irradiance in time series of GHI measurements," Renewable Energy, Elsevier, vol. 90(C), pages 520-531.
    3. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    4. Caldas, M. & Alonso-Suárez, R., 2019. "Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1643-1658.
    5. Cui, Mingjian & Zhang, Jie & Feng, Cong & Florita, Anthony R. & Sun, Yuanzhang & Hodge, Bri-Mathias, 2017. "Characterizing and analyzing ramping events in wind power, solar power, load, and netload," Renewable Energy, Elsevier, vol. 111(C), pages 227-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcia, Dário & Liang, Dawei & Almeida, Joana & Catela, Miguel & Costa, Hugo & Tibúrcio, Bruno D. & Guillot, Emmanuel & Vistas, Cláudia R., 2023. "Lowest-threshold solar laser operation under cloudy sky condition," Renewable Energy, Elsevier, vol. 210(C), pages 127-133.
    2. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2023. "Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach," Renewable Energy, Elsevier, vol. 216(C).
    2. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    3. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    4. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    5. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    6. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    7. Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
    8. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    9. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    11. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    12. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    13. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    16. Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Alex Bunodiere & Han Soo Lee, 2020. "Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan," Energies, MDPI, vol. 13(18), pages 1-26, September.
    18. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    20. EunJi Ahn & Jin Hur, 2022. "A Practical Metric to Evaluate the Ramp Events of Wind Generating Resources to Enhance the Security of Smart Energy Systems," Energies, MDPI, vol. 15(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6191-:d:897923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.