IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp176-185.html
   My bibliography  Save this article

Use of activated carbons as catalyst supports for biodiesel production

Author

Listed:
  • Narowska, Beata
  • Kułażyński, Marek
  • Łukaszewicz, Marcin
  • Burchacka, Ewa

Abstract

The traditional method of biodiesel production is based on the transesterification of triglycerides using an alkaline catalyst dissolved in methanol. The aim of this study was to replace a homogeneous alkaline catalyst with a heterogeneous catalyst on the carbon support. The use of a carbon enables the catalyst to be reusable in the production process, eliminates the formation of soaps and increases the glycerol purity. Fatty acid methyl esters were obtained from the transesterification of corn oil using KOH supported on activated carbon (KOH/AC). The effect of the molar ratio of methanol to oil, reaction time and catalyst amount were used to optimize the transesterification reaction. The optimum condition for waste corn oil transesterification to methyl ester was obtained below 0.75 wt.% catalyst amount. The yield was up to 92 wt.% at 62.5 °C, 1 h reaction time and 3:1 methanol-to-oil ratio. This study demonstrated that the transesterification of the waste corn oil using methanol can be effectively catalyzed by the developed catalyst.

Suggested Citation

  • Narowska, Beata & Kułażyński, Marek & Łukaszewicz, Marcin & Burchacka, Ewa, 2019. "Use of activated carbons as catalyst supports for biodiesel production," Renewable Energy, Elsevier, vol. 135(C), pages 176-185.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:176-185
    DOI: 10.1016/j.renene.2018.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anuar, Mohd Razealy & Abdullah, Ahmad Zuhairi, 2016. "Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 208-223.
    2. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    3. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    4. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    5. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    2. Mahmoud, Hala R. & El-Molla, Sahar A. & Ibrahim, Marwa M., 2020. "Biodiesel production via stearic acid esterification over mesoporous ZrO2/SiO2 catalysts synthesized by surfactant-assisted sol-gel auto-combustion route," Renewable Energy, Elsevier, vol. 160(C), pages 42-51.
    3. Li, Hui & Liu, Fengsheng & Ma, Xiaoling & Cui, Ping & Guo, Min & Li, Yan & Gao, Yan & Zhou, Shoujun & Yu, Mingzhi, 2020. "An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification," Renewable Energy, Elsevier, vol. 149(C), pages 816-827.
    4. Li, Dongming & Feng, Wenping & Chen, Chao & Chen, Shangxing & Fan, Guorong & Liao, Shengliang & Wu, Guoqiang & Wang, Zongde, 2021. "Transesterification of Litsea cubeba kernel oil to biodiesel over zinc supported on zirconia heterogeneous catalysts," Renewable Energy, Elsevier, vol. 177(C), pages 13-22.
    5. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    6. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    7. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Ali, Adnan Hayel & Wanderlind, Eduardo H. & Almerindo, Gizelle I., 2024. "Activated carbon obtained from malt bagasse as a support in heterogeneous catalysis for biodiesel production," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    2. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    3. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    5. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    6. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    7. Bonaiuto, M. & Mosca, O. & Milani, A. & Ariccio, S. & Dessi, F. & Fornara, F., 2024. "Beliefs about technological and contextual features drive biofuels’ social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.
    9. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    10. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    11. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    12. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    13. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    14. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    15. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    16. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    17. Mohamed, Mohamed Mokhatr & Bayoumy, W.A. & El-Faramawy, Hossam & El-Dogdog, Wagdy & Mohamed, Ashraf A., 2020. "A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies," Renewable Energy, Elsevier, vol. 160(C), pages 450-464.
    18. Tsoutsos, T.D. & Tournaki, S. & Paraíba, O. & Kaminaris, S.D., 2016. "The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 74-83.
    19. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:176-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.