IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp195-204.html
   My bibliography  Save this article

Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst

Author

Listed:
  • Bora, Akash Pratim
  • Dhawane, Sumit H.
  • Anupam, Kumar
  • Halder, Gopinath

Abstract

The present study investigates the feasibility of synthesis of environmentally benign heterogeneous carbonaceous catalyst and biodiesel production from a single source i.e. Mesua ferrea Linn (MFL) seeds. The study primarily focuses on the optimisation of biodiesel synthesis process considering four parameters viz. reaction time, temperature, catalyst loading and methanol to oil ratio (M/O). The parametric influence on the free fatty acid (FFA) conversion has been studied to evaluate the most significant parameters. The contribution factor and analysis of variance results reveal that temperature is the most significant parameter influencing the FFA conversion followed by reaction time and catalyst content. The optimum conditions observed for maximum FFA conversion of 95.57% were: temperature 55 °C, time 2 h, catalyst content 10 wt% and M/O 6:1. The physico-chemical properties of the produced Mesua ferrea oil methyl ester (MFOME) were analysed following ASTM standard methods and found to be within limit; and compatible with the conventional diesel. Thus, the study suggests that the MFL seeds could be a promising source for the synthesis of an effective heterogeneous catalyst; and eco-friendly energy efficient sustainable fuel through the concept of green chemistry by converting waste into valuable commodity towards mitigation of increased energy demand.

Suggested Citation

  • Bora, Akash Pratim & Dhawane, Sumit H. & Anupam, Kumar & Halder, Gopinath, 2018. "Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst," Renewable Energy, Elsevier, vol. 121(C), pages 195-204.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:195-204
    DOI: 10.1016/j.renene.2018.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masakazu Toda & Atsushi Takagaki & Mai Okamura & Junko N. Kondo & Shigenobu Hayashi & Kazunari Domen & Michikazu Hara, 2005. "Biodiesel made with sugar catalyst," Nature, Nature, vol. 438(7065), pages 178-178, November.
    2. Dhawane, Sumit H. & Kumar, Tarkeshwar & Halder, Gopinath, 2016. "Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method," Renewable Energy, Elsevier, vol. 89(C), pages 506-514.
    3. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    4. Dhawane, Sumit H. & Bora, Akash Pratim & Kumar, Tarkeshwar & Halder, Gopinath, 2017. "Parametric optimization of biodiesel synthesis from rubber seed oil using iron doped carbon catalyst by Taguchi approach," Renewable Energy, Elsevier, vol. 105(C), pages 616-624.
    5. Canoira, Laureano & García Galeán, Juan & Alcántara, Ramón & Lapuerta, Magín & García-Contreras, Reyes, 2010. "Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties," Renewable Energy, Elsevier, vol. 35(1), pages 208-217.
    6. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    7. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    2. Gao, Xiu & Chen, Chao & Zhang, Wenlu & Hong, Yanping & Wang, Chunrong & Wu, Guoqiang, 2022. "Sulfated TiO2 supported molybdenum-based catalysts for transesterification of Jatropha seed oil: Effect of molybdenum species and acidity properties," Renewable Energy, Elsevier, vol. 191(C), pages 357-369.
    3. Bora, Akash Pratim & Konda, Lutukurthi D.N.V.V. & Pasupuleti, Srinivas & Durbha, Krishna Sandilya, 2022. "Synthesis of MgO/MgSO4 nanocatalyst by thiourea–nitrate solution combustion for biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 190(C), pages 474-486.
    4. Gohain, Minakshi & Bardhan, Pritam & Laskar, Khairujjaman & Sarmah, Saswati & Mandal, Manabendra & Bora, Utpal & Chandra Kalita, Mohan & Goud, Vaibhav Vasant & Deka, Dhanapati, 2020. "Rhodotorula mucilaginosa: A source of heterogeneous catalyst for biodiesel production from yeast single cell oil and waste cooking oil," Renewable Energy, Elsevier, vol. 160(C), pages 220-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    2. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    3. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    4. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    5. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    7. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    8. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    10. Fassinou, Wanignon Ferdinand, 2012. "Higher heating value (HHV) of vegetable oils, fats and biodiesels evaluation based on their pure fatty acids' HHV," Energy, Elsevier, vol. 45(1), pages 798-805.
    11. Savaliya, Mehulkumar L. & Patel, Pooja J. & Dholakiya, Bharatkumar Z., 2017. "A simple and sustainable process for the preparation of fuel grade esters using PE-Si composite: A reusable catalytic system," Renewable Energy, Elsevier, vol. 109(C), pages 1-12.
    12. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Ngaosuwan, Kanokwan & Goodwin, James G. & Prasertdham, Piyasan, 2016. "A green sulfonated carbon-based catalyst derived from coffee residue for esterification," Renewable Energy, Elsevier, vol. 86(C), pages 262-269.
    14. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    16. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    17. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    18. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    19. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    20. Flores, Ken P. & Omega, Jan Laurence O. & Cabatingan, Luis K. & Go, Alchris W. & Agapay, Ramelito C. & Ju, Yi-Hsu, 2019. "Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 130(C), pages 510-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:195-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.