IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10159-d457259.html
   My bibliography  Save this article

From Disposal to Reuse: Production of Sustainable Fatty Acid Alkyl Esters Derived from Residual Oil Using a Biphasic Magnetic Catalyst

Author

Listed:
  • Adriano Lima da Silva

    (Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil)

  • Carlos Bruno Barreto Luna

    (Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil)

  • Ana Flávia Félix de Farias

    (Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil)

  • Suelen Alves Silva Lucena de Medeiros

    (Núcleo de Pesquisa e Extensão, Laboratório de Combustíveis e Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil)

  • Simoni Margareti Plentz Meneghetti

    (Grupo de Catálise e Reatividade Química (GCAR), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió 57072-970, AL, Brazil)

  • Alisson Mendes Rodrigues

    (Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil
    Unidade Acadêmica de Engenharia de Materiais, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil)

  • Ana Cristina Figueiredo de Melo Costa

    (Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil
    Unidade Acadêmica de Engenharia de Materiais, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil)

Abstract

The development of technologies to promote residual oil reuse has been encouraged, aiming to reduce the environmental impact and promote sustainability. In this study, a biphasic magnetic catalyst with composition equal to ZnO-Ni 0.5 Zn 0.5 Fe 2 O 4 was synthesized and applied to the fatty acid alkyl ester (FAAE) production from residual oil. The ZnO-Ni 0.5 Zn 0.5 Fe 2 O 4 catalyst was synthesized by combustion reaction and characterized by X-ray diffraction (XRD), textural analysis, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetry, particle size distribution, scanning electron microscopy, magnetic measurements, quantification of acidic sites by TPD-NH 3 , and catalytic tests. The efficiency of catalyst synthesis was evaluated by XRD, FTIR, and Raman spectroscopy experiments. Granulometric analysis and SEM images confirmed the presence of the agglomerates and particles with a wide size range. The catalyst presented soft magnetic behavior, with high saturation magnetization. Additionally, the catalytic activity of the ZnO-Ni 0.5 Zn 0.5 Fe 2 O 4 system showed an average conversion of 73% for the methyl route. The results indicate that the reuse of residual oil is feasible for FAAE production, contributing to sustainable fuel development. Moreover, it allows the reintroduction of waste oil into the biodiesel production chain, reducing cost after process optimization.

Suggested Citation

  • Adriano Lima da Silva & Carlos Bruno Barreto Luna & Ana Flávia Félix de Farias & Suelen Alves Silva Lucena de Medeiros & Simoni Margareti Plentz Meneghetti & Alisson Mendes Rodrigues & Ana Cristina Fi, 2020. "From Disposal to Reuse: Production of Sustainable Fatty Acid Alkyl Esters Derived from Residual Oil Using a Biphasic Magnetic Catalyst," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10159-:d:457259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Bruno Barreto Luna & Danilo Diniz Siqueira & Eduardo da Silva Barbosa Ferreira & Wallisson Alves da Silva & Jessika Andrade dos Santos Nogueira & Edcleide Maria Araújo, 2020. "From Disposal to Technological Potential: Reuse of Polypropylene Waste from Industrial Containers as a Polystyrene Impact Modifier," Sustainability, MDPI, vol. 12(13), pages 1-21, June.
    2. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo, 2015. "The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 589-603.
    3. Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
    4. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    5. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Emmanuel Araújo Carreiro & Valmir José da Silva & Alisson Mendes Rodrigues & Ester Pires de Almeida Barbosa & Fabiana Pereira da Costa & Romualdo Rodrigues Menezes & Gelmires Araújo Neves & Lis, 2021. "Firing Parameters Effect on the Physical and Mechanical Properties of Scheelite Tailings-Containing Ceramic Masses," Sustainability, MDPI, vol. 14(1), pages 1-15, December.
    2. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. De Oliveira, Fernando C. & Coelho, Suani T., 2017. "History, evolution, and environmental impact of biodiesel in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 168-179.
    3. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    4. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    5. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    6. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    7. Dayanne Diniz de Souza Morais & Carlos Bruno Barreto Luna & Elieber Barros Bezerra & Danyelle Campos de França & Edcleide Maria Araújo & Emanuel Pereira do Nascimento & Amanda Dantas de Oliveira & Tom, 2022. "Performance of Poly(caprolactone) (PCL) as an Impact Modifier for Polystyrene (PS): Effect of Functionalized Compatibilizers with Maleic Anhydride and Glycidyl Methacrylate," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    9. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    10. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    11. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    12. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Tsoutsos, T.D. & Tournaki, S. & Paraíba, O. & Kaminaris, S.D., 2016. "The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 74-83.
    15. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    16. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    17. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    19. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    20. Uzun, Başak Burcu & Kılıç, Murat & Özbay, Nurgül & Pütün, Ayşe E. & Pütün, Ersan, 2012. "Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties," Energy, Elsevier, vol. 44(1), pages 347-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10159-:d:457259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.