IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp14-24.html
   My bibliography  Save this article

Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers

Author

Listed:
  • García-Gil, Alejandro
  • Muela Maya, Sylvia
  • Garrido Schneider, Eduardo
  • Mejías Moreno, Miguel
  • Vázquez-Suñé, Enric
  • Marazuela, Miguel Ángel
  • Mateo Lázaro, Jesús
  • Sánchez-Navarro, José Ángel

Abstract

The steady increase of geothermal systems using groundwater is compromising the renewability of the geothermal resources in shallow urban aquifers. To ensure sustainability, scientifically-based criteria are required to prevent potential thermal interferences between geothermal systems. In this work, a management indicator (balanced sustainability index, BSI) applicable to groundwater heat pump systems is defined to assign a quantitative value of sustainability to each system, based on their intrinsic potential to produce thermal interference. The BSI indicator relies on the net heat balance transferred to the terrain throughout the year and the maximum seasonal thermal load associated. To define this indicator, 75 heating-cooling scenarios based in 23 real systems were established to cover all possible different operational conditions. The scenarios were simulated in a standard numerical model, adopted as a reference framework, and thermal impacts were evaluated. Two polynomial regression models were used for the interpolation of thermal impacts, thus allowing the direct calculation of the sustainability indicator developed as a function of heating-cooling ratios and maximum seasonal thermal loads. The BSI indicator could provide authorities and technicians with scientifically-based criteria to establish geothermal monitoring programs, which are critical to maintain the implementation rates and renewability of these systems in the cities.

Suggested Citation

  • García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:14-24
    DOI: 10.1016/j.renene.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    2. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    3. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    4. Lund, John W., 2003. "Direct-use of geothermal energy in the USA," Applied Energy, Elsevier, vol. 74(1-2), pages 33-42, January.
    5. Junghans, Lars, 2015. "Evaluation of the economic and environmental feasibility of heat pump systems in residential buildings, with varying qualities of the building envelope," Renewable Energy, Elsevier, vol. 76(C), pages 699-705.
    6. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    7. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    8. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2017. "Increased ground temperatures in urban areas: Estimation of the technical geothermal potential," Renewable Energy, Elsevier, vol. 103(C), pages 388-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Claudia Naldi & Aminhossein Jahanbin & Enzo Zanchini, 2021. "A New Estimate of Sand and Grout Thermal Properties in the Sandbox Experiment for Accurate Validations of Borehole Simulation Codes," Energies, MDPI, vol. 14(4), pages 1-25, February.
    3. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    4. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    5. Luo, Jin & Li, Peijia & Yan, Zezhou & Wu, Yungang, 2022. "An integrated 3D method to assess the application potential of GWHP systems in fluvial deposit areas," Renewable Energy, Elsevier, vol. 187(C), pages 631-644.
    6. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    7. Myungkwan Lim & Kyoungbin Lim & Changhee Lee, 2020. "A Study on Improving the Coefficient of Performance by Comparing Balancing Well and Standing Column Well Heat Exchange Systems," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    8. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    9. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    3. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    4. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    5. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    6. Baquedano, Carlos & García-Gil, Alejandro & Marazuela, Miguel Ángel & Carnicer, Ana María & Aguilera, Héctor & Santamarta, Juan Carlos & Mejías Fernández, Alejandro, 2022. "The efficiency loss in groundwater heat pump systems triggered by thermal recycling," Renewable Energy, Elsevier, vol. 200(C), pages 1458-1468.
    7. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    8. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    9. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    10. Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2020. "On the Implementation of the Nearly Zero Energy Building Concept for Jointly Acting Renewables Self-Consumers in Mediterranean Climate Conditions," Energies, MDPI, vol. 13(5), pages 1-29, February.
    11. Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
    12. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    13. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    14. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    15. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    16. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    17. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    18. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    19. De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Chen, B., 2016. "Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction," Applied Energy, Elsevier, vol. 161(C), pages 24-40.
    20. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:14-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.