IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v161y2016icp24-40.html
   My bibliography  Save this article

Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction

Author

Listed:
  • De Silva, G.P.D.
  • Ranjith, P.G.
  • Perera, M.S.A.
  • Chen, B.

Abstract

The rapidly increasing world energy demand requires the development of deep earth energy extraction methods such as unconventional oil and gas production, including coal bed methane recovery (CBM) and utilisation of hot pore fluid in deep geothermal reservoirs. However, all these deep earth energy production methods are associated with huge wastewater (brine) production. Disposal of this brine has become a major challenge in the energy industry, as direct disposal is highly undesirable due to its organic and inorganic pollutant content and its high salinity. Re-injection of brine into deep aquifers is therefore a feasible option to overcome this issue and the flowability through the sedimentary formation or its permeability plays a major role in this process. However, most of previous works mainly focus on the homogenous formations and therefore the brine permeability of deep heterogeneous sandstone aquifers is still not well understood. This study intends to obtain a comprehensive knowledge of this process by conducting a series of core flooding experiments for brine injection into two types of clay rich sandstone, WWS and WGS, obtained from Marburg formation, Queensland, Australia along different bedding orientations and under different reservoir conditions. A series of core flooding tests were conducted on 38mm diameter and 150mm long cylindrical core samples and the pressure developments along the samples were recorded over time for a range of confining pressures (10–25MPa), temperatures (30–60°C), and injection over-pressures (4–20MPa). According to the results, brine permeability in clay rich sandstone increases with increasing injection over-pressure and reduces with increasing depth and aquifer temperature. Furthermore, the flow characteristics of sandstone aquifers are largely dependent on their heterogeneous nature, and the presence of authigenic quartz, clay depositions, low permeable beddings and their orientation have significant influences on reservoir permeability. A stepped pattern was observed in the pore pressure development along the tested sandstone cores which depicts a possible pore structure variation during the fluid injection. A rapid pressure development occurs throughout the sample at the initial stage of injection may be due to the flux tends to pass through the preferable flow paths in the rock mass and then over the time this pressure development diminishes, possibly due to the gradual building of flow barriers by grain particles extracted from the initial rapid flux. These flow barriers obstruct the expected flow towards the downstream and cease the flow for some time until the pressure builds up steadily up to a certain level as it can break the flow barrier by re-arranging the pore structure. The existence of beddings further delays the demolishment of this barrier and beddings perpendicular to the flow direction creates a greater permeability reduction in the aquifer than parallel beddings, because the influence of these low permeable zones on permeability depends on the extent to which they limit the flowability across the rock mass. The experimental results reveal that the brine permeability in sandstone can be reduced significantly up to 7 and 40 times respectively for parallel and perpendicular beddings in this study compared to no-bedding types.

Suggested Citation

  • De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Chen, B., 2016. "Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction," Applied Energy, Elsevier, vol. 161(C), pages 24-40.
  • Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:24-40
    DOI: 10.1016/j.apenergy.2015.09.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915011885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    2. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    3. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    4. Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
    5. Li, Qi & Wei, Ya-Ni & Liu, Guizhen & Lin, Qing, 2014. "Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses," Applied Energy, Elsevier, vol. 116(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Xue & Faning Dang & Zhengzheng Cao & Feng Du & Jie Ren & Xu Chang & Feng Gao, 2018. "Deformation, Permeability and Acoustic Emission Characteristics of Coal Masses under Mining-Induced Stress Paths," Energies, MDPI, vol. 11(9), pages 1-18, August.
    2. Zhang, Decheng & Ranjith, P.G. & Perera, M.S.A. & Zhang, C.P., 2020. "Influences of test method and loading history on permeability of tight reservoir rocks," Energy, Elsevier, vol. 195(C).
    3. Hongxin Xie & Qiangling Yao & Liqiang Yu & Changhao Shan, 2022. "Study on Damage Characteristics of Water-Bearing Coal Samples under Cyclic Loading–Unloading," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    4. Du, Shuheng & Shi, Yongmin & Zheng, Xiaojiao & Chai, Guangsheng, 2020. "Using “Umbrella Deconstruction & Energy Dispersive Spectrometer (UD-EDS)” technique to quantify the anisotropic elements distribution of "Chang 7" shale and its significance," Energy, Elsevier, vol. 191(C).
    5. Fan, Lurong & Wang, Binyu & Song, Xiaoling, 2023. "An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams," Energy, Elsevier, vol. 263(PA).
    6. Chengpeng Zhang & Pathegama Gamage Ranjith, 2018. "Experimental Study of Matrix Permeability of Gas Shale: An Application to CO 2 -Based Shale Fracturing," Energies, MDPI, vol. 11(4), pages 1-17, March.
    7. De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Dai, Z.X. & Yang, S.Q., 2017. "An experimental evaluation of unique CO2 flow behaviour in loosely held fine particles rich sandstone under deep reservoir conditions and influencing factors," Energy, Elsevier, vol. 119(C), pages 121-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Lu, Qi & Narsilio, Guillermo A. & Aditya, Gregorius Riyan & Johnston, Ian W., 2017. "Economic analysis of vertical ground source heat pump systems in Melbourne," Energy, Elsevier, vol. 125(C), pages 107-117.
    3. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    4. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Dalampakis, Paschalis & Gelegenis, John & Ilias, Andreas & Ladas, Angelos & Kolios, Petros, 2017. "Technical and economic assessment of geothermal soil heating systems in row covered protected crops: A case study from Greece," Applied Energy, Elsevier, vol. 203(C), pages 201-218.
    6. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    7. Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2020. "On the Implementation of the Nearly Zero Energy Building Concept for Jointly Acting Renewables Self-Consumers in Mediterranean Climate Conditions," Energies, MDPI, vol. 13(5), pages 1-29, February.
    8. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    9. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    10. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    11. Chandarasekharam, D. & Aref, Lashin & Nassir, Al Arifi, 2014. "CO2 mitigation strategy through geothermal energy, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 154-163.
    12. Tomaszewska Barbara, 2012. "Geothermal Water Resources Management – Economic Aspects Of Their Treatment / Gospodarka Zasobami Wód Termalnych - Ekonomiczne Aspekty Ich Uzdatniania," Gospodarka Surowcami Mineralnymi / Mineral Resources Management, Sciendo, vol. 28(4), pages 59-70, December.
    13. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.
    14. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    15. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    16. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    17. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    18. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    19. George Antoneas & Irene Koronaki, 2024. "Geothermal Solutions for Urban Energy Challenges: A Focus on CO 2 Plume Geothermal Systems," Energies, MDPI, vol. 17(2), pages 1-27, January.
    20. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:161:y:2016:i:c:p:24-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.