IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp631-644.html
   My bibliography  Save this article

An integrated 3D method to assess the application potential of GWHP systems in fluvial deposit areas

Author

Listed:
  • Luo, Jin
  • Li, Peijia
  • Yan, Zezhou
  • Wu, Yungang

Abstract

Fluvial deposits are commonly abundant in groundwater resources, indicating very high potential for the application of groundwater heat pump (GWHP) systems. To better understand the geospatial variation in geothermal potential, this paper presents a multidisciplinary 3D approach to assess aquifer-based geothermal resources in the Han River area in Hubei Province, China. The geological setting was determined by collecting data from 1286 drilling holes. The thermophysical-hydraulic properties were investigated, and the geospatial variation was characterized by 3D geological modeling. A GIS-based procedure was deployed for the assessment of the geothermal potential by extracting parameters from these 3D models as input. The results show that the middle reaches have the highest potential due to the great thickness of the aquifer layers, followed by the upper reaches, and the lower reaches have the lowest potential. The validation of 3 specific cases, located in the upper, middle, and lower reaches, shows that the model has uncertainties of 6.1%, 14.7% and 5.5%, respectively. This implies that the accuracy of the estimated potential depends on both the available drilling data and geological heterogeneity. This study shows that integrated 3D modeling and the GIS-based approach could be useful in geothermal planning in fluvial deposit areas.

Suggested Citation

  • Luo, Jin & Li, Peijia & Yan, Zezhou & Wu, Yungang, 2022. "An integrated 3D method to assess the application potential of GWHP systems in fluvial deposit areas," Renewable Energy, Elsevier, vol. 187(C), pages 631-644.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:631-644
    DOI: 10.1016/j.renene.2022.01.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guiling & Wang, Wanli & Luo, Jin & Zhang, Yuhao, 2019. "Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 392-421.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    4. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yan, Yuying & Spitler, Jeffrey D., 2015. "Developmental status and challenges of GWHP and ATES in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 973-985.
    5. Moritani Shigeoki & Sasaki Kazuya & Itaka Kenji, 2020. "Development of low-cost evaluation method for coefficient of performance of heat pump for heating greenhouses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6877-6890, October.
    6. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    7. Hongkyo Kim & Yujin Nam & Sang mu Bae & Oun Jeoun, 2018. "Development of a Multi-Well Pairing System for Groundwater Heat Pump Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    8. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    9. Blázquez, Cristina Sáez & Verda, Vittorio & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2020. "Analysis and optimization of the design parameters of a district groundwater heat pump system in Turin, Italy," Renewable Energy, Elsevier, vol. 149(C), pages 374-383.
    10. Luo, Jin & Zhang, Yuhao & Rohn, Joachim, 2020. "Analysis of thermal performance and drilling costs of borehole heat exchanger (BHE) in a river deposited area," Renewable Energy, Elsevier, vol. 151(C), pages 392-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    2. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    3. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    4. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    5. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    6. Retkowski, Waldemar & Ziefle, Gesa & Thöming, Jorg, 2015. "Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems," Applied Energy, Elsevier, vol. 149(C), pages 259-271.
    7. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    8. Luo, Jin & Wang, Haiqi & Zhang, Haiyong & Yan, Zezhou, 2021. "A geospatial assessment of the installation potential of shallow geothermal systems in a graben basin," Renewable Energy, Elsevier, vol. 165(P1), pages 553-564.
    9. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    11. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    12. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    13. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    14. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.
    15. Extremera-Jiménez, Alejandro J. & Gutiérrez-Montes, Cándido & Casanova-Peláez, Pedro J. & Cruz-Peragón, Fernando, 2022. "Vertical ground heat exchanger parameter characterization through a compound design of experiments," Renewable Energy, Elsevier, vol. 199(C), pages 1361-1371.
    16. Edoardo Ruffino & Bruno Piga & Alessandro Casasso & Rajandrea Sethi, 2022. "Heat Pumps, Wood Biomass and Fossil Fuel Solutions in the Renovation of Buildings: A Techno-Economic Analysis Applied to Piedmont Region (NW Italy)," Energies, MDPI, vol. 15(7), pages 1-25, March.
    17. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    18. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    19. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.
    20. Wang, Guiling & Wang, Wanli & Luo, Jin & Zhang, Yuhao, 2019. "Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 392-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:631-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.