IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp731-742.html
   My bibliography  Save this article

Experimental investigation of flows inside draft tube of a high-head pump-turbine

Author

Listed:
  • Lai, Xi-De
  • Liang, Quan-Wei
  • Ye, Dao-Xing
  • Chen, Xiao-Ming
  • Xia, Mi-Mi

Abstract

Due to fast and frequently switch between pumping and generating modes several times daily and continuously increase to operate at off-design conditions, understanding the detail of flows is a prerequisite to the design and safety operation of a pump-turbine. Because complex flow phenomena occur inside the draft tube at different operating conditions, its flow patterns are highly demanding to be accurately investigated with reliable approach. Laser Doppler Velocimetry measurements and vortex ropes visualization inside the draft tube of a high-head pump-turbine with the specific speed nq = 24 have been performed at various operating conditions both in turbine and pump modes. Measurements and observations were taken for the speed factor nED = 0.21 and 0.19 at loads ranging from 40% to 120% of the rated power at turbine mode, and the possible operating range at pump mode. The distribution of measured axial and tangential velocities, the size of backflow zones and the rotation of vortex rope are all in line with the hydraulic design and model test results. The LDV measurement has been applied to accurately analyze the swirl flow pattern and quantify swirling intensity, the region of backflow and vortex rope, as well as to precisely determine the location of the rope-free zone combining with vortex ropes visualization. Measured instantaneous tangential velocities have been applied to accurately distinguish the processional frequency of a rotating vortex rope inside the draft tube from other fluctuations at part loads. Influence of the splitter blades can be also observed in both time and frequency domain of measured instantaneous velocities. This study can provide rather valuable information for analysis and validation in different operating regimes. The presented methodology and techniques have been demonstrated very helpful to successfully developed high-head pump-turbines for two pumped storage power plants in China.

Suggested Citation

  • Lai, Xi-De & Liang, Quan-Wei & Ye, Dao-Xing & Chen, Xiao-Ming & Xia, Mi-Mi, 2019. "Experimental investigation of flows inside draft tube of a high-head pump-turbine," Renewable Energy, Elsevier, vol. 133(C), pages 731-742.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:731-742
    DOI: 10.1016/j.renene.2018.10.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mulu, B.G. & Jonsson, P.P. & Cervantes, M.J., 2012. "Experimental investigation of a Kaplan draft tube – Part I: Best efficiency point," Applied Energy, Elsevier, vol. 93(C), pages 695-706.
    2. Jonsson, P.P. & Mulu, B.G. & Cervantes, M.J., 2012. "Experimental investigation of a Kaplan draft tube – Part II: Off-design conditions," Applied Energy, Elsevier, vol. 94(C), pages 71-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    2. Yu Chen & Jianxu Zhou & Bryan Karney & Qiang Guo & Jian Zhang, 2022. "Analytical Implementation and Prediction of Hydraulic Characteristics for a Francis Turbine Runner Operated at BEP," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    3. Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
    4. Su, Wen-Tao & Li, Xiao-Bin & Xia, Yu-Xing & Liu, Quan-Zhong & Binama, Maxime & Zhang, Ya-Ning, 2021. "Pressure fluctuation characteristics of a model pump-turbine during runaway transient," Renewable Energy, Elsevier, vol. 163(C), pages 517-529.
    5. Baidar, Binaya & Nicolle, Jonathan & Gandhi, Bhupendra K. & Cervantes, Michel J., 2020. "Effects of runner change on the Winter-Kennedy flow measurement method – A numerical study," Renewable Energy, Elsevier, vol. 153(C), pages 975-984.
    6. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    7. Lai, Xide & Chen, Xiaoming & Liang, Quanwei & Ye, Daoxing & Gou, Qiuqin & Wang, Rongtao & Yan, Yi, 2023. "Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine," Renewable Energy, Elsevier, vol. 211(C), pages 236-247.
    8. Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
    9. Zhang, Xiaoxi & Cheng, Yongguang & Yang, Zhiyan & Chen, Qiuhua & Liu, Demin, 2021. "Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system," Renewable Energy, Elsevier, vol. 163(C), pages 685-697.
    10. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    11. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    12. Kim, Seung-Jun & Suh, Jun-Won & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers," Renewable Energy, Elsevier, vol. 184(C), pages 510-525.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    2. Martinez, J.J. & Deng, Z.D. & Titzler, P.S. & Duncan, J.P. & Lu, J. & Mueller, R.P. & Tian, C. & Trumbo, B.A. & Ahmann, M.L. & Renholds, J.F., 2019. "Hydraulic and biological characterization of a large Kaplan turbine," Renewable Energy, Elsevier, vol. 131(C), pages 240-249.
    3. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    4. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    5. Daniels, S.J. & Rahat, A.A.M. & Tabor, G.R. & Fieldsend, J.E. & Everson, R.M., 2020. "Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics," Renewable Energy, Elsevier, vol. 160(C), pages 112-126.
    6. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    7. Raluca G. Iovănel & Georgiana Dunca & Diana M. Bucur & Michel J. Cervantes, 2020. "Numerical Simulation of the Flow in a Kaplan Turbine Model during Transient Operation from the Best Efficiency Point to Part Load," Energies, MDPI, vol. 13(12), pages 1-21, June.
    8. Bosioc, Alin Ilie & Tănasă, Constantin, 2020. "Experimental study of swirling flow from conical diffusers using the water jet control method," Renewable Energy, Elsevier, vol. 152(C), pages 385-398.
    9. Ivan Litvinov & Daniil Suslov & Evgeny Gorelikov & Sergey Shtork, 2021. "Experimental Study of Transient Flow Regimes in a Model Hydroturbine Draft Tube," Energies, MDPI, vol. 14(5), pages 1-13, February.
    10. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    11. Jonsson, P.P. & Mulu, B.G. & Cervantes, M.J., 2012. "Experimental investigation of a Kaplan draft tube – Part II: Off-design conditions," Applied Energy, Elsevier, vol. 94(C), pages 71-83.
    12. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    13. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    14. Gongcheng Liu & Xudi Qiu & Jiayi Ma & Diyi Chen & Xiao Liang, 2022. "Influence of Flexible Generation Mode on the Stability of Hydropower Generation System: Stability Assessment of Part-Load Operation," Energies, MDPI, vol. 15(11), pages 1-19, May.
    15. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    16. Baidar, Binaya & Nicolle, Jonathan & Gandhi, Bhupendra K. & Cervantes, Michel J., 2020. "Effects of runner change on the Winter-Kennedy flow measurement method – A numerical study," Renewable Energy, Elsevier, vol. 153(C), pages 975-984.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:731-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.