IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp685-697.html
   My bibliography  Save this article

Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system

Author

Listed:
  • Zhang, Xiaoxi
  • Cheng, Yongguang
  • Yang, Zhiyan
  • Chen, Qiuhua
  • Liu, Demin

Abstract

Water column separation (WCS), the breaking of continuous water flow by a vapor cavity, is extremely dangerous because the rejoining of the separated water columns would lead to tremendous pressure rises. Therefore, the turbine draft-tube pressure after the load rejection in hydropower stations should be controlled to prevent such an unbearable load of turbine units. To understand the forming, growing and collapsing processes of WCS in pump-turbines during the load rejection transients with guide-vane closing, a model pumped-storage system was simulated by the one-dimensional and three-dimensional coupled computational fluid dynamics model, in which the water conveyance system and pump-turbine were treated as one-dimensional and three-dimensional domains, respectively. The entire processes of the breaking and rejoining of water flow in the pump-turbine, as well as the variations in the pressure field and hydraulic forces on the runner, were analyzed. The main finding is that the collision of the separated water liquids and the collapses of the cavities occur separately with a time difference, which induces two high-amplitude mono-pulses in both the axial and radial forces on the runner. These two successive hydraulic impacts are extremely destructive and should be considered with greater emphasis when evaluates the risk of WCS.

Suggested Citation

  • Zhang, Xiaoxi & Cheng, Yongguang & Yang, Zhiyan & Chen, Qiuhua & Liu, Demin, 2021. "Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system," Renewable Energy, Elsevier, vol. 163(C), pages 685-697.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:685-697
    DOI: 10.1016/j.renene.2020.08.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    2. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    3. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.
    4. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    5. Lai, Xi-De & Liang, Quan-Wei & Ye, Dao-Xing & Chen, Xiao-Ming & Xia, Mi-Mi, 2019. "Experimental investigation of flows inside draft tube of a high-head pump-turbine," Renewable Energy, Elsevier, vol. 133(C), pages 731-742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    2. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    3. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    4. Meng Zhang & Jinhai Feng & Ziwen Zhao & Wei Zhang & Junzhi Zhang & Beibei Xu, 2022. "A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability," Energies, MDPI, vol. 15(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    2. Jin, Faye & Wang, Huanmao & Luo, Yongyao & Presas, Alexandre & Bi, Huili & Wang, Zhengwei & Lin, Kai & Lei, Xingchun & Yang, Xiaolong, 2023. "Visualization research of energy dissipation in a pump turbine unit during turbine mode's starting up," Renewable Energy, Elsevier, vol. 217(C).
    3. Lai, Xide & Chen, Xiaoming & Liang, Quanwei & Ye, Daoxing & Gou, Qiuqin & Wang, Rongtao & Yan, Yi, 2023. "Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine," Renewable Energy, Elsevier, vol. 211(C), pages 236-247.
    4. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    5. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    6. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    7. Zhiyan Yang & Zirui Liu & Yongguang Cheng & Xiaoxi Zhang & Ke Liu & Linsheng Xia, 2020. "Differences of Flow Patterns and Pressure Pulsations in Four Prototype Pump-Turbines during Runaway Transient Processes," Energies, MDPI, vol. 13(20), pages 1-20, October.
    8. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    9. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    10. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    11. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    12. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    13. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    14. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    16. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    17. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    18. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    19. K., Subramanya & Chelliah, Thanga Raj, 2023. "Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Jun-Won Suh & Seung-Jun Kim & Hyeon-Mo Yang & Moo-Sung Kim & Won-Gu Joo & Jungwan Park & Jin-Hyuk Kim & Young-Seok Choi, 2021. "A Comparative Study of the Scale Effect on the S-Shaped Characteristics of a Pump-Turbine Unit," Energies, MDPI, vol. 14(3), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:685-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.