IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp517-529.html
   My bibliography  Save this article

Pressure fluctuation characteristics of a model pump-turbine during runaway transient

Author

Listed:
  • Su, Wen-Tao
  • Li, Xiao-Bin
  • Xia, Yu-Xing
  • Liu, Quan-Zhong
  • Binama, Maxime
  • Zhang, Ya-Ning

Abstract

The runaway transient of pump-turbine usually goes in an oscillating mode with large variations of flow parameters. In this work, dynamic flow characteristics during the runaway are numerically investigated, focusing on the variations of rotation speed, flow rate, torque, and the corresponding pressure fluctuations. The time-frequency relationship of pressure pulsations in major flow passage components is analyzed using fast Fourier transform (FFT) and short-time Fourier transform (STFT), where a few special frequency bands related to rotational frequency are presented. Low-frequency components of pressure oscillations are universal in the flow passage, and mainly due to the temporal changing of flow rate. Runner-stator interaction induced frequency bands show highest magnitude in the runner, accompanying with reversed flow.

Suggested Citation

  • Su, Wen-Tao & Li, Xiao-Bin & Xia, Yu-Xing & Liu, Quan-Zhong & Binama, Maxime & Zhang, Ya-Ning, 2021. "Pressure fluctuation characteristics of a model pump-turbine during runaway transient," Renewable Energy, Elsevier, vol. 163(C), pages 517-529.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:517-529
    DOI: 10.1016/j.renene.2020.08.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031346X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    2. Lai, Xi-De & Liang, Quan-Wei & Ye, Dao-Xing & Chen, Xiao-Ming & Xia, Mi-Mi, 2019. "Experimental investigation of flows inside draft tube of a high-head pump-turbine," Renewable Energy, Elsevier, vol. 133(C), pages 731-742.
    3. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    4. Liu, Quan-Zhong & Su, Wen-Tao & Li, Xiao-Bin & Zhang, Ya-Ning, 2020. "Dynamic characteristics of load rejection process in a reversible pump-turbine," Renewable Energy, Elsevier, vol. 146(C), pages 1922-1931.
    5. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xianghao & Li, Hao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning & Zhao, Weiqiang, 2023. "Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neura," Energy, Elsevier, vol. 282(C).
    2. Jinbao Chen & Yang Zheng & Lihong Zhang & Xiaoyu Chen & Dong Liu & Zhihuai Xiao, 2023. "Influence Analysis of Runner Inlet Diameter of Hydraulic Turbine in Turbine Mode with Ultra-Low Specific Speed," Energies, MDPI, vol. 16(20), pages 1-16, October.
    3. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    4. Huichuang Li & Wenwu Zhang & Liwei Hu & Baoshan Zhu & Fujun Wang, 2023. "Studies on Flow Characteristics of Gas–Liquid Multiphase Pumps Applied in Petroleum Transportation Engineering—A Review," Energies, MDPI, vol. 16(17), pages 1-24, August.
    5. Guo, Zhen & Pu, Ziqiang & Du, Wenliao & Wang, Hongcao & Li, Chuan, 2022. "Improved adversarial learning for fault feature generation of wind turbine gearbox," Renewable Energy, Elsevier, vol. 185(C), pages 255-266.
    6. Zhou, Tingxin & Yu, Xiaodong & Zhang, Jian & Xu, Hui, 2024. "Analysis of transient pressure of pump-turbine during load rejection based on a multi-step extraction method," Energy, Elsevier, vol. 292(C).
    7. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    8. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    9. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    2. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    3. Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
    4. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    5. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    6. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    7. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    8. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    9. Yu Chen & Jianxu Zhou & Bryan Karney & Qiang Guo & Jian Zhang, 2022. "Analytical Implementation and Prediction of Hydraulic Characteristics for a Francis Turbine Runner Operated at BEP," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    10. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    11. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    12. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    13. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    14. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    15. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    16. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    17. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    18. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    19. Simin Shen & Zhongdong Qian & Bin Ji, 2019. "Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory," Energies, MDPI, vol. 12(21), pages 1-22, October.
    20. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang & Yang, Weibin, 2023. "Comprehensive hydraulic performance improvement in a pump-turbine: An experimental investigation," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:517-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.