IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v94y2016icp579-586.html
   My bibliography  Save this article

Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production

Author

Listed:
  • Feyzi, Mostafa
  • Norouzi, Leila

Abstract

The novel magnetic Ca/Fe3O4@SiO2 nanocatalysts were prepared via combination of sol-gel and incipient wetness impregnation methods for biodiesel production. This research investigates the effect of different Ca/(Fe3O4@SiO2) weight percentage on the catalytic performance. The best operational conditions were the CH3OH/oil = 15/1 at 65 °C with mechanical stirring for 5 h. Furthermore, the optimal nano catalyst showed high catalytic activity for biodiesel production and the biodiesel yield reached 97% under the optimal conditions. From the TPD results, the high basicity of catalysts enabled high yield of biodiesel was obtained. The catalyst could be recovered simply by using an external magnetic field and reused several times without appreciable loss of its catalytic activity. From the kinetic and thermodynamic studes, Ea = 47.03 kJ, A = 1.9 × 10 5 min−1, ΔH = 112.56 kJ mol−1 and ΔS = 298.63 J mol−1 K−1 were obtained. Characterization of catalysts was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), temperature programmed desorption (TPD), Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential thermogravimetric analysis (DTA), Fourier transform-infrared spectroscopy (FT-IR) and N2 adsorption–desorption measurement methods.

Suggested Citation

  • Feyzi, Mostafa & Norouzi, Leila, 2016. "Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production," Renewable Energy, Elsevier, vol. 94(C), pages 579-586.
  • Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:579-586
    DOI: 10.1016/j.renene.2016.03.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    2. Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Latha, H.K.E., 2020. "Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticle for biodiesel production and its kinetic study," Renewable Energy, Elsevier, vol. 147(P1), pages 310-321.
    3. Yatish, K.V. & Prakash, R. Mithun & Ningaraju, C. & Sakar, M. & GeethaBalakrishna, R. & Lalithamba, H.S., 2021. "Terminalia chebula as a novel green source for the synthesis of copper oxide nanoparticles and as feedstock for biodiesel production and its application on diesel engine," Energy, Elsevier, vol. 215(PB).
    4. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    5. Torkzaban, Sama & Feyzi, Mostafa & norouzi, Leila, 2022. "A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil," Renewable Energy, Elsevier, vol. 200(C), pages 996-1007.
    6. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    7. Wang, Tianyu & Ma, Xiaoling & Bingwa, Ndzondelelo & Yu, Hao & Wang, Yunpu & Li, Guoning & Guo, Min & Xiao, Qiangqiang & Li, Shijie & Zhao, Xudong & Li, Hui, 2024. "A novel bimetallic CaFe-MOF derivative for transesterification: Catalytic performance, characterization, and stability," Energy, Elsevier, vol. 292(C).
    8. Wang, Xiao-Man & Zeng, Ya-Nan & Wang, Yu-Ran & Wang, Fu-Ping & Wang, Yi-Tong & Li, Jun-Guo & Ji, Rui & Kang, Le-Le & Yu, Qing & Liu, Tian-Ji & Fang, Zhen, 2023. "A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism," Renewable Energy, Elsevier, vol. 207(C), pages 385-397.
    9. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Krishnamurthy, K.N. & Sridhara, S.N. & Ananda Kumar, C.S., 2020. "Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 280-296.
    11. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    12. Borah, Manash Jyoti & Devi, Anuchaya & Borah, Raju & Deka, Dhanapati, 2019. "Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil," Renewable Energy, Elsevier, vol. 133(C), pages 512-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:94:y:2016:i:c:p:579-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.