IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap940-948.html
   My bibliography  Save this article

Recovery of flow conditions for optimum electricity generation through micro hydro turbines

Author

Listed:
  • Khan, Abid A.
  • Shahzad, Asim
  • Hayat, Imran
  • Miah, Md Salim

Abstract

Generation of electricity from existing canals through micro projects have become practical and alternate solution to large scale hydro projects. Run-of-the-River (ROR) is a hydroelectric generation scheme with limited or no water storage requirements, as the turbines use kinetic energy of flowing water streams, canals, or rivers for power generation. In this research, a micro hydropower generation system has been studied for its utilization in existing canal of Pakistan. The work comprises verification of operation of selected water turbine in water flow conditions of Pakistan through computational analysis. Ghazi Barotha Canal with concrete bed and flowing round the year flowing is taken as a test case for analysis. The process followed includes the modeling of turbine geometry and CFD (Computation Fluid Dynamics) analysis for validation of flow potential recovery in selected canal. CFD analysis of the turbine geometry with different configurations of debris protectors is carried out to evaluate the optimal recouping of flow properties for maximum electricity generation. Moreover, it also determines whether the flow properties are recovered within the selected distance downstream, which is ten times the turbine length.

Suggested Citation

  • Khan, Abid A. & Shahzad, Asim & Hayat, Imran & Miah, Md Salim, 2016. "Recovery of flow conditions for optimum electricity generation through micro hydro turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 940-948.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:940-948
    DOI: 10.1016/j.renene.2016.05.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikh, Munawar A., 2009. "Renewable energy resource potential in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2696-2702, December.
    2. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    3. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    4. Lalander, Emilia & Leijon, Mats, 2011. "In-stream energy converters in a river – Effects on upstream hydropower station," Renewable Energy, Elsevier, vol. 36(1), pages 399-404.
    5. Ko, T.H. & Ting, K., 2006. "Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube," Energy, Elsevier, vol. 31(12), pages 2142-2152.
    6. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    7. Kessides, Ioannis N., 2013. "Chaos in power: Pakistan's electricity crisis," Energy Policy, Elsevier, vol. 55(C), pages 271-285.
    8. Khan, Abid A. & Khan, Abdul M. & Zahid, M. & Rizwan, R., 2013. "Flow acceleration by converging nozzles for power generation in existing canal system," Renewable Energy, Elsevier, vol. 60(C), pages 548-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    2. Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.
    3. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    4. Wei, Liangliang & Nakamura, Taketsune & Imai, Keita, 2020. "Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system," Renewable Energy, Elsevier, vol. 147(P1), pages 1653-1662.
    5. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2024. "Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station," Energy, Elsevier, vol. 289(C).
    6. Arispe, Tania M. & de Oliveira, Waldir & Ramirez, Ramiro G., 2018. "Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques," Renewable Energy, Elsevier, vol. 127(C), pages 114-124.
    7. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    8. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    9. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    10. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    11. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    12. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    13. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    14. Karamarković, Vladan M. & Nikolić, Miloš V. & Karamarković, Rade M. & Karamarković, Miodrag V. & Marašević, Miljan R., 2018. "Techno-economic optimization for two SHPPs that form a combined system," Renewable Energy, Elsevier, vol. 122(C), pages 265-274.
    15. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    16. Chizfahm, A. & Yazdi, E. Azadi & Eghtesad, M., 2018. "Dynamic modeling of vortex induced vibration wind turbines," Renewable Energy, Elsevier, vol. 121(C), pages 632-643.
    17. Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
    18. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    2. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    3. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    4. Mahmood, Anzar & Javaid, Nadeem & Zafar, Adnan & Ali Riaz, Raja & Ahmed, Saeed & Razzaq, Sohail, 2014. "Pakistan's overall energy potential assessment, comparison of LNG, TAPI and IPI gas projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 182-193.
    5. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    6. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2015. "The diagnosis of an electricity crisis and alternative energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1172-1185.
    7. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.
    8. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    10. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    11. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    12. Shabbir, Noman & Usman, Muhammad & Jawad, Muhammad & Zafar, Muhammad H. & Iqbal, Muhammad N. & Kütt, Lauri, 2020. "Economic analysis and impact on national grid by domestic photovoltaic system installations in Pakistan," Renewable Energy, Elsevier, vol. 153(C), pages 509-521.
    13. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    14. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    15. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    16. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    17. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    18. Riaz Uddin & Abdurrahman Javid Shaikh & Hashim Raza Khan & Muhammad Ayaz Shirazi & Athar Rashid & Saad Ahmed Qazi, 2021. "Renewable Energy Perspectives of Pakistan and Turkey: Current Analysis and Policy Recommendations," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    19. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    20. Athar Mahmood & Xiukang Wang & Ahmad Naeem Shahzad & Sajid Fiaz & Habib Ali & Maria Naqve & Muhammad Mansoor Javaid & Sahar Mumtaz & Mehwish Naseer & Renji Dong, 2021. "Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities," Sustainability, MDPI, vol. 13(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:940-948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.