IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2535-d359121.html
   My bibliography  Save this article

Effect of Single-Row and Double-Row Passive Vortex Generators on the Deep Dynamic Stall of a Wind Turbine Airfoil

Author

Listed:
  • Chengyong Zhu

    (Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Tongguang Wang

    (Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jie Chen

    (Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Wei Zhong

    (Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Passive vortex generators (VGs) have been widely applied on wind turbines to boost the aerodynamic performance. Although VGs can delay the onset of static stall, the effect of VGs on dynamic stall is still incompletely understood. Therefore, this paper aims at investigating the deep dynamic stall of NREL S809 airfoil controlled by single-row and double-row VGs. The URANS method with VGs fully resolved is used to simulate the unsteady airfoil flow. Firstly, both single-row and double-row VGs effectively suppress the flow separation and reduce the fluctuations in aerodynamic forces when the airfoil pitches up. The maximum lift coefficient is therefore increased beyond 40%, and the onset of deep dynamic stall is also delayed. This suggests that deep dynamic-stall behaviors can be properly controlled by VGs. Secondly, there is a great difference in aerodynamic performance between single-row and double-row VGs when the airfoil pitches down. Single-row VGs severely reduce the aerodynamic pitch damping by 64%, thereby undermining the torsional aeroelastic stability of airfoil. Double-row VGs quickly restore the decreased aerodynamic efficiency near the maximum angle of attack, and also significantly accelerate the flow reattachment. The second-row VGs can help the near-wall flow to withstand the adverse pressure gradient and then suppress the trailing-edge flow separation, particularly during the downstroke process. Generally, double-row VGs are better than single-row VGs concerning controlling deep dynamic stall. This work also gives a performance assessment of VGs in controlling the highly unsteady aerodynamic forces of a wind turbine airfoil.

Suggested Citation

  • Chengyong Zhu & Tongguang Wang & Jie Chen & Wei Zhong, 2020. "Effect of Single-Row and Double-Row Passive Vortex Generators on the Deep Dynamic Stall of a Wind Turbine Airfoil," Energies, MDPI, vol. 13(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2535-:d:359121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    2. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    3. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    4. Chengyong Zhu & Tongguang Wang & Wei Zhong, 2019. "Combined Effect of Rotational Augmentation and Dynamic Stall on a Horizontal Axis Wind Turbine," Energies, MDPI, vol. 12(8), pages 1-20, April.
    5. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    2. Wei-Hsin Chen & Hwai Chyuan Ong & Shih-Hsin Ho & Pau Loke Show, 2021. "Green Energy Technology," Energies, MDPI, vol. 14(20), pages 1-4, October.
    3. Elsayed, Ahmed M. & Khalifa, Mohamed A. & Benini, Ernesto & Aziz, Mohamed A., 2023. "Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets," Energy, Elsevier, vol. 275(C).
    4. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    3. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    4. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
    5. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    7. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    8. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    9. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    10. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    11. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    12. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    13. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    14. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    15. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    16. Müller-Vahl, Hanns Friedrich & Pechlivanoglou, Georgios & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2017. "Matched pitch rate extensions to dynamic stall on rotor blades," Renewable Energy, Elsevier, vol. 105(C), pages 505-519.
    17. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    18. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    19. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    20. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2535-:d:359121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.