IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p619-d135700.html
   My bibliography  Save this article

Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control

Author

Listed:
  • He-Yong Xu

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
    Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China)

  • Qing-Li Dong

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Chen-Liang Qiao

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
    Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China)

  • Zheng-Yin Ye

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

A new partial circulation control (PCC) method is implemented on the blunt trailing edge DU97-Flatback airfoil, and compared with the traditional full circulation control (FCC) based on numerical analysis. When the Coanda jet is deactivated, PCC has an attractive advantage over FCC, since the design of PCC doesn’t degrade aerodynamic characteristics of the baseline flatback section, in contrast to FCC, which is important in practical use in case of failure of the circulation control system. When the Coanda jet is activated, PCC also outperforms FCC in several respects. PCC can produce much higher lift coefficients than FCC over the entire range of angles of attack as well as the entire range of jet momentum coefficients under investigation, but with slightly higher drag coefficients. The flow field of PCC is less complex than that of FCC, indicating less energy dissipation in the main flow and hence less power expenditure for the Coanda jet. The aerodynamic figure of merit (AFM) and control efficiency for circulation control are defined, and results show that PCC has much higher AFM and control efficiency than FCC. It is demonstrated that PCC outperforms FCC in terms of effectiveness, efficiency and reliability for flow control in the blunt trailing edge wind turbine application.

Suggested Citation

  • He-Yong Xu & Qing-Li Dong & Chen-Liang Qiao & Zheng-Yin Ye, 2018. "Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control," Energies, MDPI, vol. 11(3), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:619-:d:135700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    2. Lee, Sung Gun & Park, Sang Jun & Lee, Kyung Seo & Chung, Chinwha, 2012. "Performance prediction of NREL (National Renewable Energy Laboratory) Phase VI blade adopting blunt trailing edge airfoil," Energy, Elsevier, vol. 47(1), pages 47-61.
    3. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    4. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    5. Lanzafame, R. & Messina, M., 2010. "Horizontal axis wind turbine working at maximum power coefficient continuously," Renewable Energy, Elsevier, vol. 35(1), pages 301-306.
    6. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai Du & Lejie Yang & Shuo Chen & Wenxiao Zhang & Shengchun Han, 2022. "Effect of Multistage Circulation Control on Blade Aerodynamic Performance," Energies, MDPI, vol. 15(19), pages 1-21, October.
    2. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    3. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    4. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    2. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    3. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.
    4. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    5. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    6. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    7. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    8. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    10. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    11. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    12. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    13. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    14. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    15. Baisthakur, Shubham & Fitzgerald, Breiffni, 2024. "Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation," Renewable Energy, Elsevier, vol. 224(C).
    16. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    17. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    18. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    19. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    20. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:619-:d:135700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.