IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i8p942-948.html
   My bibliography  Save this article

Pipe break prediction based on evolutionary data-driven methods with brief recorded data

Author

Listed:
  • Xu, Qiang
  • Chen, Qiuwen
  • Li, Weifeng
  • Ma, Jinfeng

Abstract

Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.

Suggested Citation

  • Xu, Qiang & Chen, Qiuwen & Li, Weifeng & Ma, Jinfeng, 2011. "Pipe break prediction based on evolutionary data-driven methods with brief recorded data," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 942-948.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:8:p:942-948
    DOI: 10.1016/j.ress.2011.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201100038X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, P. & Burn, S. & Moglia, M. & Gould, S., 2007. "A physical probabilistic model to predict failure rates in buried PVC pipelines," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1258-1266.
    2. Moglia, M. & Davis, P. & Burn, S., 2008. "Strong exploration of a cast iron pipe failure model," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 885-896.
    3. Debón, A. & Carrión, A. & Cabrera, E. & Solano, H., 2010. "Comparing risk of failure models in water supply networks using ROC curves," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 43-48.
    4. Yamijala, Shridhar & Guikema, Seth D. & Brumbelow, Kelly, 2009. "Statistical models for the analysis of water distribution system pipe break data," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 282-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Xu & Zhimin Qiang & Qiuwen Chen & Kuo Liu & Nan Cao, 2018. "A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1713-1723, March.
    2. Jara-Arriagada, Carlos & Stoianov, Ivan, 2021. "Pipe breaks and estimating the impact of pressure control in water supply networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Iman Moslehi & Mohammadreza Jalili_Ghazizadeh, 2020. "Pressure-Pipe Breaks Relationship in Water Distribution Networks: A Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2851-2868, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Kabir, Golam & Tesfamariam, Solomon & Sadiq, Rehan, 2015. "Predicting water main failures using Bayesian model averaging and survival modelling approach," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 498-514.
    3. Rifaai, Talha M. & Abokifa, Ahmed A. & Sela, Lina, 2022. "Integrated approach for pipe failure prediction and condition scoring in water infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Kozłowski Edward & Kowalska Beata & Kowalski Dariusz & Mazurkiewicz Dariusz, 2019. "Survival Function in the Analysis of the Factors Influencing the Reliability of Water Wells Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4909-4921, November.
    5. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    8. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    9. Mohammad Taghi Tahooneh & Reza Dashti, 2022. "A new model for calculating rational failure rates based on network assets worth," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2221-2233, October.
    10. ValinÄ ius, Mindaugas & ŽutautaitÄ—, Inga & Dundulis, Gintautas & RimkeviÄ ius, Sigitas & Janulionis, Remigijus & Bakas, Rimantas, 2015. "Integrated assessment of failure probability of the district heating network," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 314-322.
    11. Pradeep Amarasinghe & An Liu & Prasanna Egodawatta & Paul Barnes & James McGree & Ashantha Goonetilleke, 2017. "Modelling Resilience of a Water Supply System under Climate Change and Population Growth Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2885-2898, July.
    12. Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2021. "A Case Study in View of Developing Predictive Models for Water Supply System Management," Energies, MDPI, vol. 14(11), pages 1-25, June.
    13. Chen, Thomas Ying-Jeh & Guikema, Seth David & Daly, Craig Michael, 2019. "Optimal pipe inspection paths considering inspection tool limitations," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 156-166.
    14. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    15. Kiyeon Kim & Joonyoung Kim & Tae-Young Kwak & Choong-Ki Chung, 2018. "Logistic regression model for sinkhole susceptibility due to damaged sewer pipes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 765-785, September.
    16. Cordes, J.A. & Thomas, J. & Wong, R.S. & Carlucci, D., 2009. "Reliability estimates for flawed mortar projectile bodies," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1887-1893.
    17. Daulat, Shamsuddin & Rokstad, Marius Møller & Bruaset, Stian & Langeveld, Jeroen & Tscheikner-Gratl, Franz, 2024. "Evaluating the generalizability and transferability of water distribution deterioration models," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Catherine Ragasa & Suzanne Thornsbury & Satish Joshi, 2017. "Dynamics of EU food safety certification: a survival analysis of firm decisions," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-25, December.
    19. Jara-Arriagada, Carlos & Stoianov, Ivan, 2021. "Pipe breaks and estimating the impact of pressure control in water supply networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    20. Jaber Alkasseh & Mohd Adlan & Ismail Abustan & Hamidi Aziz & Abu Hanif, 2013. "Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley, Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1439-1455, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:8:p:942-948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.