IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3305-d569047.html
   My bibliography  Save this article

A Case Study in View of Developing Predictive Models for Water Supply System Management

Author

Listed:
  • Katarzyna Pietrucha-Urbanik

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Barbara Tchórzewska-Cieślak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Mohamed Eid

    (National Institute of Applied Sciences of Rouen-LMN, INSA-Rouen, 685 avenue de l’Université-BP 08, 76801 St. Etienne du Rouvray, France)

Abstract

Initiated by a case study to assess the effectiveness of the modernisation actions undertaken in a water supply system, some R&D activities were conducted to construct a global predictive model, based on the available operational failure and recovery data. The available operational data, regarding the water supply system, are the pipes’ diameter, failure modes, materials, functional conditions, seasonality, and the number of failures and time-to-recover intervals. The operational data are provided by the water company responsible of the supply system. A predictive global model is proposed based on the output of the operational data statistical assessment. It should assess the expected effectiveness of decisions taken in support of the modernisation and the extension plan.

Suggested Citation

  • Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2021. "A Case Study in View of Developing Predictive Models for Water Supply System Management," Energies, MDPI, vol. 14(11), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3305-:d:569047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Pietrucha-Urbanik & Janusz R. Rak, 2020. "Consumers’ Perceptions of the Supply of Tap Water in Crisis Situations," Energies, MDPI, vol. 13(14), pages 1-20, July.
    2. Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2020. "Water Network-Failure Data Assessment," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Dawid Szpak, 2020. "Method for Determining the Probability of a Lack of Water Supply to Consumers," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Debón, A. & Carrión, A. & Cabrera, E. & Solano, H., 2010. "Comparing risk of failure models in water supply networks using ROC curves," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 43-48.
    6. Marek Urbanik & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2019. "Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures," Energies, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2023. "Water System Safety Analysis Model," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szpak & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2022. "A Grey-System Theory Approach to Assess the Safety of Gas-Supply Systems," Energies, MDPI, vol. 15(12), pages 1-13, June.
    2. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2021. "Functional Safety Concept to Support Hazard Assessment and Risk Management in Water-Supply Systems," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Rifaai, Talha M. & Abokifa, Ahmed A. & Sela, Lina, 2022. "Integrated approach for pipe failure prediction and condition scoring in water infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Mohamed Eid, 2020. "Water Network-Failure Data Assessment," Energies, MDPI, vol. 13(11), pages 1-14, June.
    5. Jakub Żywiec & Krzysztof Boryczko & Dariusz Kowalski, 2021. "Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network," Resources, MDPI, vol. 10(9), pages 1-17, August.
    6. Wei Liu & Binhao Wang & Zhaoyang Song, 2022. "Failure Prediction of Municipal Water Pipes Using Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1271-1285, March.
    7. Józef Ober & Janusz Karwot, 2021. "Tap Water Quality: Seasonal User Surveys in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.
    8. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Andrés Ortega-Ballesteros & David Muñoz-Rodríguez & Alberto-Jesus Perea-Moreno, 2022. "Advances in Leakage Control and Energy Consumption Optimization in Drinking Water Distribution Networks," Energies, MDPI, vol. 15(15), pages 1-5, July.
    11. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    12. Alicia Robles-Velasco & Cristóbal Ramos-Salgado & Jesús Muñuzuri & Pablo Cortés, 2021. "Artificial Neural Networks to Forecast Failures in Water Supply Pipes," Sustainability, MDPI, vol. 13(15), pages 1-10, July.
    13. Lin Fang & Fengping Wu, 2020. "Can Water Rights Trading Scheme Promote Regional Water Conservation in China? Evidence from a Time-Varying DID Analysis," IJERPH, MDPI, vol. 17(18), pages 1-14, September.
    14. Izabela Piegdoń, 2022. "A New Concept of Crisis Water Management in Urban Areas Based on the Risk Maps of Lack of Water Supply in Response to European Law," Resources, MDPI, vol. 11(2), pages 1-18, February.
    15. Pradeep Amarasinghe & An Liu & Prasanna Egodawatta & Paul Barnes & James McGree & Ashantha Goonetilleke, 2017. "Modelling Resilience of a Water Supply System under Climate Change and Population Growth Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2885-2898, July.
    16. Aihua Long & Pei Zhang & Yang Hai & Xiaoya Deng & Junfeng Li & Jie Wang, 2020. "Spatio-Temporal Variations of Crop Water Footprint and Its Influencing Factors in Xinjiang, China during 1988–2017," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    17. Dawid Szpak, 2020. "Method for Determining the Probability of a Lack of Water Supply to Consumers," Energies, MDPI, vol. 13(20), pages 1-16, October.
    18. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    19. Yu Zhou & Shanshan Shi & Shaohua Wang, 2022. "A Multi-Agent Model-Based Evolutionary Model of Port Service Value Network and Decision Preferences," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    20. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2022. "A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3305-:d:569047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.