IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i5d10.1007_s11269-017-1899-8.html
   My bibliography  Save this article

A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study

Author

Listed:
  • Qiang Xu

    (Chinese Academy of Sciences)

  • Zhimin Qiang

    (Chinese Academy of Sciences)

  • Qiuwen Chen

    (Nanjing Hydraulics Research Institute)

  • Kuo Liu

    (Beijing Waterworks Group)

  • Nan Cao

    (Beijing Waterworks Group)

Abstract

Pipe failure often occurs in water distribution networks (WDNs) and results in high levels of water loss and socio-economic damage. Physical-based, statistical and data-driven models have been developed to estimate pipe failure rates (failures per km of pipe per year) to efficiently manage water losses from WDNs and to ensure safe operations. Due to the complexities of pipe failure patterns, we develop a superposed statistical model to depict the relationship between pipe failure rate and pipe age. The model’s level of uncertainty was then quantified by simulating pipe failures as Poisson numbers. Part of Beijing’s WDN is taken as a study case, and pipe failure data for a 4-year period, as well as pipe properties, are collected to develop the pipe failure model. The case study results show that the pipe failure rates vary with time in a non-monotonic manner and that the proposed model captures pipe failure behaviour with an R2 value of 0.95. A 95% confidence interval of modelled pipe failures for each pipe age group is used to describe the uncertainty level of the model. We find that 88% of the observations fall under the 95% confidence interval. The established model could be applied to prioritize pipes with higher failure rates to optimize pipe replacement/rehabilitation strategies. Our uncertainty analysis of this model can help utility managers understand the model’s reliability and formulate reasonable WDN management plans.

Suggested Citation

  • Qiang Xu & Zhimin Qiang & Qiuwen Chen & Kuo Liu & Nan Cao, 2018. "A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1713-1723, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-017-1899-8
    DOI: 10.1007/s11269-017-1899-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1899-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1899-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Qiang & Chen, Qiuwen & Li, Weifeng & Ma, Jinfeng, 2011. "Pipe break prediction based on evolutionary data-driven methods with brief recorded data," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 942-948.
    2. Lindenschmidt, Karl-Erich & Fleischbein, Katrin & Baborowski, Martina, 2007. "Structural uncertainty in a river water quality modelling system," Ecological Modelling, Elsevier, vol. 204(3), pages 289-300.
    3. I. Karadirek & S. Kara & G. Yilmaz & A. Muhammetoglu & H. Muhammetoglu, 2012. "Implementation of Hydraulic Modelling for Water-Loss Reduction Through Pressure Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2555-2568, July.
    4. L. Araujo & H. Ramos & S. Coelho, 2006. "Pressure Control for Leakage Minimisation in Water Distribution Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 133-149, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    2. Junichiro Yoshida & Nakahiro Yoshida, 2024. "Penalized estimation for non-identifiable models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 765-796, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    2. Abbas Al-Omari, 2013. "A Methodology for the Breakdown of NRW into Real and Administrative Losses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1913-1930, May.
    3. Oreste Fecarotta & Aonghus McNabola, 2017. "Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5043-5059, December.
    4. Pham Duc Dai & Pu Li, 2016. "Optimal Pressure Regulation in Water Distribution Systems Based on an Extended Model for Pressure Reducing Valves," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1239-1254, February.
    5. Andrés Ortega-Ballesteros & Francisco Iturriaga-Bustos & Alberto-Jesus Perea-Moreno & David Muñoz-Rodríguez, 2022. "Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    6. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    7. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    8. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2022. "Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4201-4217, September.
    9. Sanghyun Kim, 2019. "Valve Maneuver Prediction in Simple and Complicated Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4671-4685, November.
    10. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    11. Iman Moslehi & Mohammadreza Jalili_Ghazizadeh, 2020. "Pressure-Pipe Breaks Relationship in Water Distribution Networks: A Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2851-2868, July.
    12. Pecci, Filippo & Stoianov, Ivan & Ostfeld, Avi, 2021. "Relax-tighten-round algorithm for optimal placement and control of valves and chlorine boosters in water networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 690-698.
    13. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    14. Aditya Gupta & Neeraj Bokde & Kishore Kulat & Zaher Mundher Yaseen, 2020. "Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System," Energies, MDPI, vol. 13(8), pages 1-17, April.
    15. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    16. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    17. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & P. Ballesteros-Pérez, 2015. "Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4817-4831, October.
    18. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    19. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    20. Mehdi Dini & Asghar Asadi, 2020. "Optimal Operational Scheduling of Available Partially Closed Valves for Pressure Management in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2571-2583, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-017-1899-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.