IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021000843.html
   My bibliography  Save this article

Pipe breaks and estimating the impact of pressure control in water supply networks

Author

Listed:
  • Jara-Arriagada, Carlos
  • Stoianov, Ivan

Abstract

The deterioration and fracture of water supply pipes present a major threat for the continuous provision of drinking water. The hydraulic pressure in pipes is an influential factor for the occurrence of pipe breaks. However, little evidence has been provided so far for the quantitative assessment of the impact of pressure control on reducing the number of pipe breaks. In this paper, we applied logistic regression with polynomial terms, and a sensitivity analysis to assess the potential impact of pressure control on reducing pipe breaks. A large dataset of historic pipe breaks was used to develop and validate the presented method. Cast iron and asbestos cement pipes were examined in detail. Results showed that pipe breaks could be decreased by 18% to 30% by reducing the mean pressure for the investigated cohorts of asbestos cement and cast iron pipes. Pressure range reduction could provide larger impacts on both pipe materials. These results indicate that proactively controlling the hydraulic pressure may have a potentially significant impact on the reliability and sustainability of water supply networks.

Suggested Citation

  • Jara-Arriagada, Carlos & Stoianov, Ivan, 2021. "Pipe breaks and estimating the impact of pressure control in water supply networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000843
    DOI: 10.1016/j.ress.2021.107525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Xu, Qiang & Chen, Qiuwen & Li, Weifeng & Ma, Jinfeng, 2011. "Pipe break prediction based on evolutionary data-driven methods with brief recorded data," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 942-948.
    3. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Yamijala, Shridhar & Guikema, Seth D. & Brumbelow, Kelly, 2009. "Statistical models for the analysis of water distribution system pipe break data," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 282-293.
    5. Iman Moslehi & Mohammadreza Jalili_Ghazizadeh, 2020. "Pressure-Pipe Breaks Relationship in Water Distribution Networks: A Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2851-2868, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Ortega-Ballesteros & Francisco Iturriaga-Bustos & Alberto-Jesus Perea-Moreno & David Muñoz-Rodríguez, 2022. "Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    2. Jia, Rui & Du, Kun & Song, Zhigang & Xu, Wei & Zheng, Feifei, 2024. "Scenario reduction-based simulation method for efficient serviceability assessment of earthquake-damaged water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Mehryar, Mehdi & Hafezalkotob, Ashkan & Azizi, Amir & Sobhani, Farzad Movahedi, 2023. "Dynamic zoning of the network using cooperative transmission and maintenance planning: A solution for sustainability of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2021. "A decision support system to design water supply and sewer pipes replacement intervention programs," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Rifaai, Talha M. & Abokifa, Ahmed A. & Sela, Lina, 2022. "Integrated approach for pipe failure prediction and condition scoring in water infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Omar Abdulah Shrrat Omar, 2023. "Evaluation of Pipe Materials in Water System Networks Using the Theory of Advanced Multi-Criteria Analysis," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    8. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2022. "A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Daulat, Shamsuddin & Rokstad, Marius Møller & Bruaset, Stian & Langeveld, Jeroen & Tscheikner-Gratl, Franz, 2024. "Evaluating the generalizability and transferability of water distribution deterioration models," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Daulat, Shamsuddin & Rokstad, Marius Møller & Bruaset, Stian & Langeveld, Jeroen & Tscheikner-Gratl, Franz, 2024. "Evaluating the generalizability and transferability of water distribution deterioration models," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Rifaai, Talha M. & Abokifa, Ahmed A. & Sela, Lina, 2022. "Integrated approach for pipe failure prediction and condition scoring in water infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Yaser Amiri-Ardakani & Mohammad Najafzadeh, 2021. "Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3703-3720, September.
    6. Amira Rjaibi & Sophie Duchesne, 2024. "Impact of Pressure on the Deterioration of Drinking Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4867-4882, September.
    7. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    8. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    9. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    10. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    11. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    12. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    14. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    15. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    16. Alicia Robles-Velasco & Cristóbal Ramos-Salgado & Jesús Muñuzuri & Pablo Cortés, 2021. "Artificial Neural Networks to Forecast Failures in Water Supply Pipes," Sustainability, MDPI, vol. 13(15), pages 1-10, July.
    17. Iman Moslehi & Mohammadreza Jalili_Ghazizadeh, 2020. "Pressure-Pipe Breaks Relationship in Water Distribution Networks: A Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2851-2868, July.
    18. Juliet Chebet Moso & Stéphane Cormier & Cyril de Runz & Hacène Fouchal & John Mwangi Wandeto, 2021. "Anomaly Detection on Data Streams for Smart Agriculture," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    19. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    20. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.