IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipas0951832024006641.html
   My bibliography  Save this article

Urban natural gas pipeline operational vulnerability under the influence of a social spatial distribution structure: A case study of the safety risk patterns in Kunming, China

Author

Listed:
  • Xu, Jiarui
  • Ji, Chunhou
  • Yang, Lihong
  • Liu, Yun
  • Xie, Zhiqiang
  • Fu, Xingfeng
  • Jiang, Fengshan
  • Liao, Mengfan
  • Zhao, Lei

Abstract

Frequent urban natural gas pipeline accidents pose a serious threat to the safety of people and property in surrounding areas. However, current research on natural gas pipeline risks primarily focuses on evaluating the pipelines themselves, with no established method for assessing the impact of pipeline disasters on surrounding areas. This paper proposes an urban natural gas pipeline risk assessment method that integrates the physical attributes of the pipelines with an analysis of social vulnerability based on urban social spatial distribution. Using urban Point of Interest (POI) data, a social spatial distribution model for potential natural gas pipeline accidents is constructed. The risk of pipeline failure is assessed based on physical vulnerability, while the consequences of failure are evaluated through social vulnerability. This method combines the analysis of physical and social vulnerabilities to achieve a comprehensive urban natural gas pipeline risk assessment. The results identified 68 out of 6148 pipelines in the study area as "double high" pipelines, characterized by high physical vulnerability (relatively high risk pipelines) and high social vulnerability (involving level IV areas). The high risk communities identified in the study area are the Cuihu West Road Community and the Daguan Commercial City Community, highlighting the characteristics of risk distribution. The findings suggest that this study contributes to improving urban resilience to natural gas pipeline incidents, reducing potential economic losses and public impacts, and enhancing urban public safety. It also provides new insights into natural gas pipeline risk assessment and urban public safety research.

Suggested Citation

  • Xu, Jiarui & Ji, Chunhou & Yang, Lihong & Liu, Yun & Xie, Zhiqiang & Fu, Xingfeng & Jiang, Fengshan & Liao, Mengfan & Zhao, Lei, 2025. "Urban natural gas pipeline operational vulnerability under the influence of a social spatial distribution structure: A case study of the safety risk patterns in Kunming, China," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006641
    DOI: 10.1016/j.ress.2024.110593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui & Tran, Trung, 2023. "Modeling and analysis of internal corrosion induced failure of oil and gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Woldesellasse, Haile & Tesfamariam, Solomon, 2023. "Consequence assessment of gas pipeline failure caused by external pitting corrosion using an integrated Bayesian belief network and GIS model: Application with Alberta pipeline," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    3. Wang, Yifei & Xie, Mingjiang & Su, Chun, 2024. "Multi-objective maintenance strategy for corroded pipelines considering the correlation of different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Yu, Xuchao & Liang, Wei & Zhang, Laibin & Reniers, Genserik & Lu, Linlin, 2018. "Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 50-67.
    5. Chan-Wook Lee & Do-Guen Yoo, 2023. "Comparative Study on Strategies for the Division of Earthquake-Proof Strengthening Segments to Reinforce the Reliability of Water Supply Systems," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    6. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    9. Peng Zhang & Guojin Qin & Yihuan Wang, 2019. "Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis," Energies, MDPI, vol. 12(6), pages 1-21, March.
    10. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Wang, Zifeng & Li, Suzhen, 2020. "Data-driven risk assessment on urban pipeline network based on a cluster model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    12. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    13. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Brito, Anderson J. & de Almeida, Adiel Teixeira & Mota, Caroline M.M., 2010. "A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory," European Journal of Operational Research, Elsevier, vol. 200(3), pages 812-821, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerouali, Bilal & Sahraoui, Yacine & Nahal, Mourad & Chateauneuf, Alaa, 2024. "Reliability-based maintenance optimization of long-distance oil and gas transmission pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Zhang, Zhiwei & Li, Songling & Wang, Huajie & Qian, Hongliang & Gong, Changqing & Wu, Qiongyao & Fan, Feng, 2025. "A study of neural network-based evaluation methods for pipelines with multiple corrosive regions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui, 2023. "Dynamic Bayesian network model to study under-deposit corrosion," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Kere, Kiswendsida J. & Huang, Qindan, 2024. "An analytical approach to evaluate life-cycle cost of deteriorating pipelines," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Yao, Lizhong & Zhang, Yu & He, Tiantian & Luo, Haijun, 2023. "Natural gas pipeline leak detection based on acoustic signal analysis and feature reconstruction," Applied Energy, Elsevier, vol. 352(C).
    13. Caroline Mota & Adiel Almeida, 2012. "A multicriteria decision model for assigning priority classes to activities in project management," Annals of Operations Research, Springer, vol. 199(1), pages 361-372, October.
    14. Peng Zhang & Xiangsu Chen & Chaohai Fan, 2020. "Research on a Safety Assessment Method for Leakage in a Heavy Oil Gathering Pipeline," Energies, MDPI, vol. 13(6), pages 1-19, March.
    15. Wang, Zifeng & Li, Suzhen, 2020. "Data-driven risk assessment on urban pipeline network based on a cluster model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    17. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Jing, Qi & Yu, Lin & Lan, Fengyi & Li, Yuntao, 2024. "Quantitative assessment rules and models for dynamic disaster risk in high-density gas gathering stations: Practical application in a largest CBM gathering station," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.